Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite Study Covers Forest Loss Worldwide

10.05.2010
A new study using satellite imagery finds the greatest loss in forest cover from 2000 to 2005 wasn’t in rain forests, but in boreal forests in places like North America.

Despite ongoing threats to rain forests in the Amazon and Congo river basins and in Indonesia, losses were greatest in those boreal forests, followed by humid tropical, dry tropical and temperate forests.

“This study quantifies all stand-replacement disturbances regardless of land use,” said South Dakota State University professor Matt Hansen, co-director of SDSU’s Geographic Information Science Center of Excellence.

“Human disturbances, such as clear-cuts in managed forests and deforestation, as well as natural disturbances such as fire, disease and storm damage, are all included. What we found was a widely varying dynamic across the globe’s forests.”

Hansen was lead author of the study, “Quantification of global gross forest cover loss,” which appeared online on April 26, in the Proceedings of the National Academy of Sciences. Hansen’s co-authors were Peter Potapov, also of SDSU’s Geographic Information Science Center of Excellence, and Stephen Stehman, of the College of Environmental Science and Forestry at State University of New York in Syracuse.

Using images from two satellite-based sensors, the study tracked gross forest cover loss, or GFCL, defined as the area of forest cover removed because of any disturbance, including both natural and human-induced causes.

The study found North America has the greatest area of gross forest cover loss, followed by Asia and South America. North America alone accounts for nearly 30 percent of global GFCL and features the highest proportional GFCL of 5.1 percent. Africa has the lowest proportional GFCL of 0.4 percent, reflecting a lower overall use of forests for commercial development.

Combined, North and South America account for more than one-half of the global total area of GFCL. South America has the largest remaining intact forests within the Tropics, areas that are under increasing pressure from agro-industrial development. North America features a spatially pervasive GFCL dynamic with logging and fire as primary causes.

Nationally, Brazil lost the largest area of forest over the study period — 165,000 square kilometers or about 64,000 square miles — followed by Canada at 160,000 square kilometers, or about 62,000 square miles. Of the countries with more than one million square kilometers of forest cover, the United States showed the greatest proportional loss of forest cover and the Democratic Republic of Congo showed the least.

The United States includes both temperate forests and, in Alaska, boreal forest cover. It showed the highest percentage of year 2000 GFCL (6.0 percent). Although fire is a major contributor, particularly in Alaska and the western part of the country, logging is a primary and widespread cause of GFCL. Regional centers of logging are found mainly in the southeastern states, but also along the West Coast and in the Upper Midwest.

Hansen cautioned that gross forest cover loss is only one component of net change, and that the processes driving forest loss and recovery differ by region. Those are areas future research can explore.

“For example, the majority of estimated gross forest cover loss for the boreal biome is due to a naturally induced fire dynamic. To fully characterize global forest change dynamics, remote sensing efforts must extend beyond estimating gross forest cover loss to identify proximate causes of forest cover loss and to estimate recovery rates,” Hansen said.

Nearly 60 percent of the boreal forest cover lost is due to fire, Hansen said, while the remaining 40 percent of loss in boreal forests is attributable to logging and other change dynamics such as insect and disease pressure. For example, mountain pine beetle infestations are an important factor in loss of forest cover in British Columbia, Canada.

The study looked specifically at the seven nations of the world that have more than one million square kilometers of forest cover. The Russian Federation has the most extensive forest cover, followed by Brazil, Canada, the United States, the Democratic Republic of Congo, China and Indonesia.

Those seven countries account for more than 57 percent of the world’s forests.

Matt Hansen, co-director of SDSU’s Geographic Information Science Center of Excellence

605-688-6591

Matt Hansen | Newswise Science News
Further information:
http://www.sdstate.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>