Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salamanders shrinking due to climate change

26.03.2014

Wild salamanders living in some of North America’s best salamander habitat are getting smaller as their surroundings get warmer and drier, forcing them to burn more energy in a changing climate.

That’s the key finding of a new study co-authored by a Clemson University biologist and published Tuesday in the journal Global Change Biology that examined museum specimens caught in the Appalachian Mountains from 1957 to 2007 and wild salamanders measured at the same sites in 2011-2012.

The salamanders studied from 1980 onward were, on average, eight percent smaller than their counterparts from earlier decades. The changes were most marked in the Southern Appalachians and at low elevations, settings where detailed weather records showed the climate has warmed and dried out most.

“One of the stresses that warmer climates will impose on many organisms is warmer body temperatures,” said Michael W. Sears of the biological sciences department. “These warmer body temperatures cause animals to burn more energy while performing their normal activities. All else being equal, this means that there is less energy for growth.”

To find out how climate change affected the animals, Sears used a computer program to create an artificial salamander, which allowed him to estimate a typical salamander’s daily activity and the number of calories it burned.

Using detailed weather records for the study sites, Sears was able to simulate the minute-by-minute behavior of individual salamanders based on weather conditions at their home sites during their lifetimes. The simulation showed that modern salamanders were just as active as their ancestors had been.

“Ectothermic organisms, such as salamanders, cannot produce their own body heat,” Sears explained. “Their metabolism speeds up as temperatures rise, causing a salamander to burn seven to eight percent more energy in order to maintain the same activity as their forebears.”

The changing body size of salamanders is one of the largest and fastest rates of change ever recorded in any animal and the data recorded in this study reveals that it is clearly correlated with climate change, according to Karen R. Lips, associate professor at the University of Maryland’s (UMD) department of biology and co-author on the paper.

“We do not know if decreased body size is a genetic change or a sign that the animals are flexible enough to adjust to new conditions,” said Lips. “If these animals are adjusting, it gives us hope that some species are going to be able to keep up with climate change.”

The research team’s next step will be to compare the salamander species that are getting smaller to the ones that are disappearing from parts of their range. If they match, the team will be one step closer to understanding why salamanders are declining in a part of the world that once was a haven for them.

Clemson University
Ranked No. 21 among national public universities, Clemson University is a major, land-grant, science- and engineering-oriented research university that maintains a strong commitment to teaching and student success. Clemson is an inclusive, student-centered community characterized by high academic standards, a culture of collaboration, school spirit and a competitive drive to excel.

This material is based upon work supported by the University of Maryland and Smithsonian Institution Seed Grant Program. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the University of Maryland and Smithsonian Institution Seed Grant Program.

Michael W. Sears | EurekAlert!

Further reports about: Biology ancestors animals burn salamanders species temperatures

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>