Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safety checklist use yields 10 percent drop in hospital deaths

02.02.2011
A Johns Hopkins-led safety checklist program that virtually eliminated bloodstream infections in hospital intensive-care units throughout Michigan appears to have also reduced deaths by 10 percent, a new study suggests.

Although prior research showed a major reduction in central-line related bloodstream infections at hospitals using the checklist, the new study is the first to show its use directly lowered mortality.

"We knew that when we applied safety science principles to the delivery of health care, we would dramatically reduce infections in intensive care units, and now we know we are also saving lives," says Peter J. Pronovost, M.D., Ph.D., a professor of anesthesiology and critical care medicine at the Johns Hopkins University School of Medicine and leader of the study published in BMJ, the British medical journal. "Thousands of people are believed to have survived because of this effort to reduce bloodstream infections."

Pronovost's previous research has shown that coupling a cockpit-style, infection-control checklist he developed with a work environment that encourages nurses to speak up if safety rules aren't followed reduced ICU central-line bloodstream infections to nearly zero at The Johns Hopkins Hospital and at hospitals throughout the states of Michigan and Rhode Island. Experts say an estimated 80,000 patients a year with central lines get infected, some 31,000 die — nearly as many as die from breast cancer annually — and the cost of treating them may be as high as $3 billion nationally.

For the new study, Pronovost and his team, using Medicare claims data, studied hospital mortality of patients admitted to ICUs in Michigan before, during and after what is known as the Keystone ICU Project, which features the checklist. They compared the Michigan information to similar data from 11 surrounding states. While data from both Michigan and the other states showed a reduction in hospital deaths of elderly patients admitted to ICUs over the five-year period from October 2001 to December 2006, the patients in Michigan were significantly more likely to survive a hospital stay during and after the Keystone project.

These findings cannot definitively attribute the mortality reduction to the Keystone project, Pronovost says, but no other known large-scale initiatives were uniquely introduced across Michigan during the study period. "This is perhaps the only large-scale study to suggest a significant reduction in mortality from a quality-improvement initiative," Pronovost says.

The Keystone ICU Project, developed at Johns Hopkins, includes a much-heralded checklist for doctors and nurses to follow when placing a central-line catheter, highlighting five cautionary and basic steps from hand-washing to avoiding placement in the groin area where infection rates are higher. Along with the checklist, the program promotes a "culture of safety" that comprises safety science education, training in ways to identify potential safety problems, development of evidence-based solutions, and measurement of improvements. The program also empowers all caregivers, no matter how senior or junior, to question each other and stop procedures if safety is compromised.

Central lines are thin plastic tubes used regularly for patients in ICUs to administer medication or fluids, obtain blood for tests, and directly gauge cardiovascular measurements such as central venous blood pressure. But the tubes are easily contaminated.

In 2009, U.S. Health and Human Services Secretary Kathleen Sebelius called for a 50 percent reduction in catheter-related infections nationwide by 2012. To that end, in partnership with a branch of the American Hospital Association and the Michigan Hospital Association, the Johns Hopkins model is being rolled out state-by-state across the country. Forty states have launched the program, and preliminary data from some of the early adopters is very encouraging, Pronovost says.

The original Keystone project was funded by HHS's Agency for Healthcare Research and Quality.

Other Johns Hopkins researchers involved in the research include Allison Lipitz-Snyderman, Ph.D.; Donald Steinwachs, Ph.D.; Dale M. Needham, M.D., Ph.D.; Elizabeth Colantuoni, Ph.D.; and Laura L. Morlock, Ph.D.

For more information: http://www.hopkinsmedicine.org/anesthesiology_critical_care_medicine/research/experts/research_faculty/bios/pronovost.html

http://www.hopkinsmedicine.org/innovation_quality_patient_care/

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>