Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safety checklist use yields 10 percent drop in hospital deaths

02.02.2011
A Johns Hopkins-led safety checklist program that virtually eliminated bloodstream infections in hospital intensive-care units throughout Michigan appears to have also reduced deaths by 10 percent, a new study suggests.

Although prior research showed a major reduction in central-line related bloodstream infections at hospitals using the checklist, the new study is the first to show its use directly lowered mortality.

"We knew that when we applied safety science principles to the delivery of health care, we would dramatically reduce infections in intensive care units, and now we know we are also saving lives," says Peter J. Pronovost, M.D., Ph.D., a professor of anesthesiology and critical care medicine at the Johns Hopkins University School of Medicine and leader of the study published in BMJ, the British medical journal. "Thousands of people are believed to have survived because of this effort to reduce bloodstream infections."

Pronovost's previous research has shown that coupling a cockpit-style, infection-control checklist he developed with a work environment that encourages nurses to speak up if safety rules aren't followed reduced ICU central-line bloodstream infections to nearly zero at The Johns Hopkins Hospital and at hospitals throughout the states of Michigan and Rhode Island. Experts say an estimated 80,000 patients a year with central lines get infected, some 31,000 die — nearly as many as die from breast cancer annually — and the cost of treating them may be as high as $3 billion nationally.

For the new study, Pronovost and his team, using Medicare claims data, studied hospital mortality of patients admitted to ICUs in Michigan before, during and after what is known as the Keystone ICU Project, which features the checklist. They compared the Michigan information to similar data from 11 surrounding states. While data from both Michigan and the other states showed a reduction in hospital deaths of elderly patients admitted to ICUs over the five-year period from October 2001 to December 2006, the patients in Michigan were significantly more likely to survive a hospital stay during and after the Keystone project.

These findings cannot definitively attribute the mortality reduction to the Keystone project, Pronovost says, but no other known large-scale initiatives were uniquely introduced across Michigan during the study period. "This is perhaps the only large-scale study to suggest a significant reduction in mortality from a quality-improvement initiative," Pronovost says.

The Keystone ICU Project, developed at Johns Hopkins, includes a much-heralded checklist for doctors and nurses to follow when placing a central-line catheter, highlighting five cautionary and basic steps from hand-washing to avoiding placement in the groin area where infection rates are higher. Along with the checklist, the program promotes a "culture of safety" that comprises safety science education, training in ways to identify potential safety problems, development of evidence-based solutions, and measurement of improvements. The program also empowers all caregivers, no matter how senior or junior, to question each other and stop procedures if safety is compromised.

Central lines are thin plastic tubes used regularly for patients in ICUs to administer medication or fluids, obtain blood for tests, and directly gauge cardiovascular measurements such as central venous blood pressure. But the tubes are easily contaminated.

In 2009, U.S. Health and Human Services Secretary Kathleen Sebelius called for a 50 percent reduction in catheter-related infections nationwide by 2012. To that end, in partnership with a branch of the American Hospital Association and the Michigan Hospital Association, the Johns Hopkins model is being rolled out state-by-state across the country. Forty states have launched the program, and preliminary data from some of the early adopters is very encouraging, Pronovost says.

The original Keystone project was funded by HHS's Agency for Healthcare Research and Quality.

Other Johns Hopkins researchers involved in the research include Allison Lipitz-Snyderman, Ph.D.; Donald Steinwachs, Ph.D.; Dale M. Needham, M.D., Ph.D.; Elizabeth Colantuoni, Ph.D.; and Laura L. Morlock, Ph.D.

For more information: http://www.hopkinsmedicine.org/anesthesiology_critical_care_medicine/research/experts/research_faculty/bios/pronovost.html

http://www.hopkinsmedicine.org/innovation_quality_patient_care/

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>