Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The role of stem cells in renewing the cornea

02.10.2008
A group of researchers in Lausanne, Switzerland has published a study appearing in the Oct 1 advance online edition of the Journal Nature that shows how the cornea uses stem cells to repair itself.

Using mouse models they demonstrate that everyday wear and tear on the cornea is repaired from stem cells residing in the corneal epithelium, and that more serious repair jobs require the involvement of other stem cells that migrate from the limbus, a region between the cornea and the conjunctiva, the white part of the eye.

The integrity of the cornea, the transparent outer layer of the eye, is critical for vision. Millions of people around the world suffer from partial or complete blindness when their corneas lose transparency. Treatment options involve corneal transplants and, more recently, stem cell therapy. The surface of the cornea is naturally in a state of constant renewal; its upper layer, or epithelium, is completely turned over once every 7-14 days. Because slow-cycling stem cells have been found in the mouse limbus, researchers have assumed that these stem cells are the ones responsible for corneal renewal.

The research led by Professor Yann Barrandon, who holds a joint appointment at EPFL and the Lausanne University Hospitals (CHUV), challenges this prevailing opinion that the limbus is the only place where corneal stem cells reside. The researchers demonstrated that the epithelium of the cornea also contains stem cells, and that these cells have the capacity to generate two different epithelial tissues: corneal (covering the transparent part of the eye) and conjunctival (covering the white part of the eye). They demonstrated experimentally that these are the cells activated in everyday corneal renewal. The stem cells residing in the limbus have a different role; they are only activated when the cornea is seriously wounded.

To explain this distribution of stem cells and the different roles played by stem cells in different zones of the eye, the researchers propose that the expanding epithelia of the cornea and the conjunctiva act like tectonic plates, squeezing the limbus between them into a kind of equilibrium zone. Due to the constant expansion, stem cells accumulate in this zone. In the event of a rupture in the equilibrium, such as a large corneal injury, these limbal stem cells migrate into the cornea and conjunctiva and differentiate into the appropriate cell type to make repairs.

The limbus is already recognized as a source of cells for corneal stem cell therapy in humans, and this new research indicates that the cornea itself can also be explored as a potential source of these cells. And because cancer has been associated with the presence of adult stem cells, the model also helps explain why transitional zones like the limbus, where stem cells accumulate, are sites where cancer tends to occur more frequently.

Contact: Yann Barrandon, yann.barrandon@epfl.ch, phone +41 79 598 65 21

Mary Parlange | alfa
Further information:
http://www.epfl.ch
http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature07406.html

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>