Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The role of stem cells in renewing the cornea

02.10.2008
A group of researchers in Lausanne, Switzerland has published a study appearing in the Oct 1 advance online edition of the Journal Nature that shows how the cornea uses stem cells to repair itself.

Using mouse models they demonstrate that everyday wear and tear on the cornea is repaired from stem cells residing in the corneal epithelium, and that more serious repair jobs require the involvement of other stem cells that migrate from the limbus, a region between the cornea and the conjunctiva, the white part of the eye.

The integrity of the cornea, the transparent outer layer of the eye, is critical for vision. Millions of people around the world suffer from partial or complete blindness when their corneas lose transparency. Treatment options involve corneal transplants and, more recently, stem cell therapy. The surface of the cornea is naturally in a state of constant renewal; its upper layer, or epithelium, is completely turned over once every 7-14 days. Because slow-cycling stem cells have been found in the mouse limbus, researchers have assumed that these stem cells are the ones responsible for corneal renewal.

The research led by Professor Yann Barrandon, who holds a joint appointment at EPFL and the Lausanne University Hospitals (CHUV), challenges this prevailing opinion that the limbus is the only place where corneal stem cells reside. The researchers demonstrated that the epithelium of the cornea also contains stem cells, and that these cells have the capacity to generate two different epithelial tissues: corneal (covering the transparent part of the eye) and conjunctival (covering the white part of the eye). They demonstrated experimentally that these are the cells activated in everyday corneal renewal. The stem cells residing in the limbus have a different role; they are only activated when the cornea is seriously wounded.

To explain this distribution of stem cells and the different roles played by stem cells in different zones of the eye, the researchers propose that the expanding epithelia of the cornea and the conjunctiva act like tectonic plates, squeezing the limbus between them into a kind of equilibrium zone. Due to the constant expansion, stem cells accumulate in this zone. In the event of a rupture in the equilibrium, such as a large corneal injury, these limbal stem cells migrate into the cornea and conjunctiva and differentiate into the appropriate cell type to make repairs.

The limbus is already recognized as a source of cells for corneal stem cell therapy in humans, and this new research indicates that the cornea itself can also be explored as a potential source of these cells. And because cancer has been associated with the presence of adult stem cells, the model also helps explain why transitional zones like the limbus, where stem cells accumulate, are sites where cancer tends to occur more frequently.

Contact: Yann Barrandon, yann.barrandon@epfl.ch, phone +41 79 598 65 21

Mary Parlange | alfa
Further information:
http://www.epfl.ch
http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature07406.html

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>