Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The role of stem cells in renewing the cornea

02.10.2008
A group of researchers in Lausanne, Switzerland has published a study appearing in the Oct 1 advance online edition of the Journal Nature that shows how the cornea uses stem cells to repair itself.

Using mouse models they demonstrate that everyday wear and tear on the cornea is repaired from stem cells residing in the corneal epithelium, and that more serious repair jobs require the involvement of other stem cells that migrate from the limbus, a region between the cornea and the conjunctiva, the white part of the eye.

The integrity of the cornea, the transparent outer layer of the eye, is critical for vision. Millions of people around the world suffer from partial or complete blindness when their corneas lose transparency. Treatment options involve corneal transplants and, more recently, stem cell therapy. The surface of the cornea is naturally in a state of constant renewal; its upper layer, or epithelium, is completely turned over once every 7-14 days. Because slow-cycling stem cells have been found in the mouse limbus, researchers have assumed that these stem cells are the ones responsible for corneal renewal.

The research led by Professor Yann Barrandon, who holds a joint appointment at EPFL and the Lausanne University Hospitals (CHUV), challenges this prevailing opinion that the limbus is the only place where corneal stem cells reside. The researchers demonstrated that the epithelium of the cornea also contains stem cells, and that these cells have the capacity to generate two different epithelial tissues: corneal (covering the transparent part of the eye) and conjunctival (covering the white part of the eye). They demonstrated experimentally that these are the cells activated in everyday corneal renewal. The stem cells residing in the limbus have a different role; they are only activated when the cornea is seriously wounded.

To explain this distribution of stem cells and the different roles played by stem cells in different zones of the eye, the researchers propose that the expanding epithelia of the cornea and the conjunctiva act like tectonic plates, squeezing the limbus between them into a kind of equilibrium zone. Due to the constant expansion, stem cells accumulate in this zone. In the event of a rupture in the equilibrium, such as a large corneal injury, these limbal stem cells migrate into the cornea and conjunctiva and differentiate into the appropriate cell type to make repairs.

The limbus is already recognized as a source of cells for corneal stem cell therapy in humans, and this new research indicates that the cornea itself can also be explored as a potential source of these cells. And because cancer has been associated with the presence of adult stem cells, the model also helps explain why transitional zones like the limbus, where stem cells accumulate, are sites where cancer tends to occur more frequently.

Contact: Yann Barrandon, yann.barrandon@epfl.ch, phone +41 79 598 65 21

Mary Parlange | alfa
Further information:
http://www.epfl.ch
http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature07406.html

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>