Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rodeo Bull Goes Head-To-Head with Zoo Dolphins in a Study of Balance

26.03.2010
Dolphins, whales and porpoises have extraordinarily small balance organs, and scientists have long wondered why.

Now a study at Washington University School of Medicine in St. Louis has contradicted a leading theory, which held that the animals moved their heads so vigorously that they had to have smaller, less responsive balance organs to avoid overwhelming their senses.

Working with a Midwestern zoo and a local rancher, the researchers, led by Timothy E. Hullar, MD, a Washington University ear, nose and throat specialist at Barnes-Jewish and St. Louis Children's hospitals, directly measured the head movements of dolphins and compared them with those of a closely related land animal — a rodeo bull. Cattle have much larger balance organs than dolphins, yet the tests showed that both species had similar head motions.

The findings will be published in the April issue of the Journal of Experimental Biology. Hullar says the results deepen our understanding of the role of balance systems, including those of people.

Much of an animal's or person's balance is controlled by the semicircular canals located in the inner ear. Even though a bottlenose dolphin is about 8 feet long, its semicircular canals are as tiny as those of the average mouse, an animal that could comfortably ride on the tip of the dolphin's nose.

"About 35 million years ago, the ancestors of whales and dolphins went from a terrestrial habitat to an aquatic habitat," says Hullar, assistant professor of otolaryngology and of anatomy and neurobiology. "During this evolutionary process, their semicircular canals got smaller and smaller. The scientific thinking has been that since the canals measure head motion, something must have changed a lot in how these animals move their heads."

Hullar points out that the general trend is for vertebrate semicircular canals to be proportional to body size. Since dolphin canals are so much smaller than the rule suggests they should be, perhaps, scientists thought, dolphins move so much that a large balance organ would be too sensitive to work properly.

Dolphin trainers at the Indianapolis Zoo agreed to work with Hullar and Benjamin M. Kandel, a Yeshiva University undergraduate student conducting summer research in Hullar's lab, to measure dolphin head movement to test this hypothesis.

"They were glad to help because zoo dolphins aren't there just to entertain but also to help educate us about the species," says Hullar, who is also on the faculty of the Program in Audiology and Communication Sciences of the Central Institute for the Deaf at Washington University School of Medicine. "They trained their dolphins to carry in their mouths a plastic pipe that contained a gyroscope and recording device so we could precisely measure their motion. Our study is the first to directly measure the head motion of dolphins."

Next, the researchers had to find a land animal to match the dolphins. Two-toed animals such as pigs, camels and hippopotamuses are closely related to dolphins. So are cattle. So when one of Hullar's patients turned out to be a rancher, Hullar asked him if he had any bulls he could work with. He didn't, but he put Hullar in touch with a neighbor who raised bulls for the rodeo circuit.

"I called him, and he said 'come on down' and directed me to his ranch in southeastern Missouri — part of the directions included making a left turn at the second chicken house," Hullar says. "He and his assistants duct-taped the gyroscope to the bull's horns and let him into the ring."

As the bull bucked and trotted around the ring, the device recorded its head movements. When the researchers went back to the lab and analyzed their data, they found the speed of the bull's head motions while trotting was remarkably similar to that of the dolphins' while swimming. The speed of the bull's head motions during bucking was like the dolphins' when they spun in the water.

"A few years ago, our lab was the first to record the nerve signals in mouse balance systems, and we showed that the smaller an animal's semicircular canal, the less sensitive it is," Hullar says. "Smaller canals, such as dolphins', would provide the animal with less information about motion. A dolphin's head is certainly large enough to hold a larger balance system, and because we've found their small canals aren't related to head motion, the question as to why they are so small remains open."

Hullar will continue to try to answer this question by looking at the nerves that are linked to balance systems to see if the explanation lies in some aspect of nerve transmission or brain processing. In addition, he is working to build experimental models of semicircular canals using computer programs so he can test the effect of various movements on their function.

Kandel BM, Hullar TE. The relationship of head movements to semicircular canal size in cetaceans. Journal of Experimental Biology. 2010 April;213:1175-1181.

Funding from the National Institute on Deafness and Other Communication Disorders, one of the National Institutes of Health, supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Judy Martin | Newswise Science News
Further information:
http://www.wustl.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>