Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rocket launches may need regulation to prevent ozone depletion

02.04.2009
Future stratospheric ozone losses from unregulated launches will eventually exceed ozone losses from CFCs

The global market for rocket launches may require more stringent regulation in order to prevent significant damage to Earth's stratospheric ozone layer in the decades to come, according to a new study by researchers in California and Colorado.

Future ozone losses from unregulated rocket launches will eventually exceed ozone losses due to chlorofluorocarbons, or CFCs, which stimulated the 1987 Montreal Protocol banning ozone-depleting chemicals, said Martin Ross, chief study author from The Aerospace Corporation in Los Angeles. The study, which includes the University of Colorado at Boulder and Embry-Riddle Aeronautical University, provides a market analysis for estimating future ozone layer depletion based on the expected growth of the space industry and known impacts of rocket launches.

"As the rocket launch market grows, so will ozone-destroying rocket emissions," said Professor Darin Toohey of CU-Boulder's atmospheric and oceanic sciences department. "If left unregulated, rocket launches by the year 2050 could result in more ozone destruction than was ever realized by CFCs."

A paper on the subject by Ross and Manfred Peinemann of The Aerospace Corporation, CU-Boulder's Toohey and Embry-Riddle Aeronautical University's Patrick Ross appeared online in March in the journal Astropolitics.

Since some proposed space efforts would require frequent launches of large rockets over extended periods, the new study was designed to bring attention to the issue in hopes of sparking additional research, said Ross. "In the policy world uncertainty often leads to unnecessary regulation," he said. "We are suggesting this could be avoided with a more robust understanding of how rockets affect the ozone layer."

Current global rocket launches deplete the ozone layer by no more than a few hundredths of 1 percent annually, said Toohey. But as the space industry grows and other ozone-depleting chemicals decline in the Earth's stratosphere, the issue of ozone depletion from rocket launches is expected to move to the forefront.

Today, just a handful of NASA space shuttle launches release more ozone-depleting substances in the stratosphere than the entire annual use of CFC-based medical inhalers used to treat asthma and other diseases in the United States and which are now banned, said Toohey. "The Montreal Protocol has left out the space industry, which could have been included."

Highly reactive trace-gas molecules known as radicals dominate stratospheric ozone destruction, and a single radical in the stratosphere can destroy up to 10,000 ozone molecules before being deactivated and removed from the stratosphere. Microscopic particles, including soot and aluminum oxide particles emitted by rocket engines, provide chemically active surface areas that increase the rate such radicals "leak" from their reservoirs and contribute to ozone destruction, said Toohey.

In addition, every type of rocket engine causes some ozone loss, and rocket combustion products are the only human sources of ozone-destroying compounds injected directly into the middle and upper stratosphere where the ozone layer resides, he said.

Although U.S. science agencies spent millions of dollars to assess the ozone loss potential from a hypothetical fleet of 500 supersonic aircraft -- a fleet that never materialized -- much less research has been done to understand the potential range of effects the existing global fleet of rockets might have on the ozone layer, said Ross.

Since 1987 CFCs have been banned from use in aerosol cans, freezer refrigerants and air conditioners. Many scientists expect the stratospheric ozone layer -- which absorbs more than 90 percent of harmful ultraviolet radiation that can harm humans and ecosystems -- to return to levels that existed prior to the use of ozone-depleting chemicals by the year 2040.

Rockets around the world use a variety of propellants, including solids, liquids and hybrids. Ross said while little is currently known about how they compare to each other with respect to the ozone loss they cause, new studies are needed to provide the parameters required to guide possible regulation of both commercial and government rocket launches in the future.

"Twenty years may seem like a long way off, but space system development often takes a decade or longer and involves large capital investments," said Ross. "We want to reduce the risk that unpredictable and more strict ozone regulations would be a hindrance to space access by measuring and modeling exactly how different rocket types affect the ozone layer."

The research team is optimistic that a solution to the problem exists. "We have the resources, we have the expertise, and we now have the regulatory history to address this issue in a very powerful way," said Toohey. "I am optimistic that we are going to solve this problem, but we are not going to solve it by doing nothing."

Darin Toohey | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>