Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Robots get a feel for the world at USC Viterbi

Robots equipped with tactile sensor able to identify materials through touch, paving the way for more useful prostheses

What does a robot feel when it touches something? Little or nothing until now. But with the right sensors, actuators and software, robots can be given the sense of feel – or at least the ability to identify different materials by touch.

Researchers at the University of Southern California's Viterbi School of Engineering published a study today in Frontiers in Neurorobotics showing that a specially designed robot can outperform humans in identifying a wide range of natural materials according to their textures, paving the way for advancements in prostheses, personal assistive robots and consumer product testing.

The robot was equipped with a new type of tactile sensor built to mimic the human fingertip. It also used a newly designed algorithm to make decisions about how to explore the outside world by imitating human strategies. Capable of other human sensations, the sensor can also tell where and in which direction forces are applied to the fingertip and even the thermal properties of an object being touched.

Like the human finger, the group's BioTac® sensor has a soft, flexible skin over a liquid filling. The skin even has fingerprints on its surface, greatly enhancing its sensitivity to vibration. As the finger slides over a textured surface, the skin vibrates in characteristic ways. These vibrations are detected by a hydrophone inside the bone-like core of the finger. The human finger uses similar vibrations to identify textures, but the robot finger is even more sensitive.

When humans try to identify an object by touch, they use a wide range of exploratory movements based on their prior experience with similar objects. A famous theorem by 18th century mathematician Thomas Bayes describes how decisions might be made from the information obtained during these movements. Until now, however, there was no way to decide which exploratory movement to make next. The article, authored by Professor of Biomedical Engineering Gerald Loeb and recently graduated doctoral student Jeremy Fishel, describes their new theorem for solving this general problem as "Bayesian Exploration."

Built by Fishel, the specialized robot was trained on 117 common materials gathered from fabric, stationery and hardware stores. When confronted with one material at random, the robot could correctly identify the material 95% of the time, after intelligently selecting and making an average of five exploratory movements. It was only rarely confused by pairs of similar textures that human subjects making their own exploratory movements could not distinguish at all.

So, is touch another task that humans will outsource to robots? Fishel and Loeb point out that while their robot is very good at identifying which textures are similar to each other, it has no way to tell what textures people will prefer. Instead, they say this robot touch technology could be used in human prostheses or to assist companies who employ experts to assess the feel of consumer products and even human skin.

Loeb and Fishel are partners in SynTouch LLC, which develops and manufactures tactile sensors for mechatronic systems that mimic the human hand. Founded in 2008 by researchers from USC's Medical Device Development Facility, the start-up is now selling their BioTac sensors to other researchers and manufacturers of industrial robots and prosthetic hands.

Another paper from this research group in the same issue of Frontiers in Neurorobotics describes the use of their BioTac sensor to identify the hardness of materials like rubber.

Original funding for development of the sensor was provided by the Keck Futures Initiative of the National Academy of Sciences to develop a better prosthetic hand for amputees. SynTouch also received a grant from the National Institutes of Health to integrate BioTac sensors with such prostheses. The texture discrimination project was funded by the U.S. Defense Advanced Research Projects Agency (DARPA) and the material hardness study by the National Science Foundation.

Fishel just completed his doctoral dissertation in biomedical engineering based on the texture research. Loeb, also Director of the USC Medical Device Development Facility, holds 54 U.S. Patents and has published over 200 journal articles on topics ranging from cochlear implants for the deaf to fundamental studies of muscles and nerves.

Katie Dunham | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>