Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New roadmap explores technologies that improve chemical industry energy use, emissions intensity

17.06.2013
IEA / ICCA / DECHEMA joint report concludes that emerging and breakthrough technologies promise indispensable energy efficiency improvements

The IEA, ICCA and DECHEMA jointly released today their new roadmap that explores how the chemical industry can further amplify catalysis and other related technology advances to boost energy efficiency in its production processes.

Entitled Technology Roadmap: Energy and GHG Reductions in the Chemical Industry via Catalytic Processes, the report looks at measures needed from the chemical industry, policymakers, investors and academia to achieve the full potential of catalysis for high-volume processes worldwide. The report details the potential impact of continuous improvements, best practices, emerging technologies, and breakthrough advances to cut energy use in 2050 by 13 exajoules and bring down greenhouse gas (GHG) emission rates by 1 gigatonne of CO2 equivalent.

Around 90 per cent of chemical processes involve the use of catalysts – such as added substances that increase the rate of reaction without being consumed by it – and related processes to enhance production efficiency and reduce energy use, thereby curtailing GHG emission levels.

Maria van der Hoeven, IEA Executive Director said: “Energy efficiency is the ‘hidden’ fuel that not only reduces consumption but also mitigates threats of energy security from climate change. This roadmap shows the necessary steps the global chemical industry and governments can take to save in 2050 what Germany uses in primary energy and emits in GHG currently.”
The report calls on policymakers to start developing and implementing policies that bestow greater reward for energy efficiency investments and remove barriers for new investments. A long-term policy framework should be created that encourages investments to reinvigorate catalyst and process improvement and R&D for high-energy consuming processes. Energy subsidies that thwart use of energy efficient technology should be stopped, the report recommends.

The report urges better link-up between financial institutions and chemical industries to meet the pressing need for funding during the transition to and upon reaching a lower-carbon business model. The roadmap outlines a clear need for global and regional co-operation on reducing energy and related emissions via industry associations.

Yoshimitsu Kobayashi, who leads energy and climate change efforts at the International Council of Chemical Associations, added: “Among the thousands of chemicals produced each year, 18 of them account for 80 per cent of energy demand in the chemical industry and 75 per cent of greenhouse gas emissions. It is a reality that the industry has made substantial efficiency improvements for this small group of chemicals, but going to the next level for all chemical products will require further development and deployment of emerging technologies.”

Sustainable biomass feedstocks and hydrogen from renewable energy sources offer additional greenhouse gas savings, according to the paper. The challenge for both is the long-term R&D needed to bring down the amount of energy consumed, to harness this technology for broad use.

Rainer Diercks, Chairman of DECHEMA e.V. added: “Catalysis is a key technology of the Chemical Industry. Academia and research organisations over the next 10 years must stimulate academic and national laboratory research on large-volume, high energy use catalytic processes. There must be join-up with the Chemical Industry to flesh out top prospects for reducing the technical barriers that scupper scale-up of game changer technologies.”

More information: Contact James Pieper, ICCA, at +32 2 676 7398 or at jpi@cefic.be

Here you will find the roadmap: http://www.dechema.de/industrialcatalysis

Dr. Kathrin Rübberdt | idw
Further information:
http://www.dechema.de/industrialcatalysis

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>