Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The when, where, why of road accidents

15.01.2009
Who knows what ‘aetiology’ means? It’s a branch of science dedicated to finding the causes of something. European researchers have been busy updating the aetiology of road accidents and studying which technologies can make our roads safer for everyone.

“When, where, how, why and to whom do road accidents and injuries occur?” These are the sorts of things researchers in the European TRACE project have been asking in their 30-month study of traffic accident causation in Europe.

To get a full aetiological picture of road accidents in Europe, TRACE had to draw on vast data from across Europe and the resourcefulness of its 22 partners in nine countries, including major carmakers like Renault and PSA, industry specialists and research centres.

According to the project, the idea was to learn as much as possible about the nature of risk factors, groups at risk, and specific “conflict driving and accident situations,” and to estimate the safety benefits of a selection of technology-based safety solutions. The various final results of the research should soon be finalised and published, but ICT Results is privy to some highlights.

Small input, big output

Even the smallest improvement of an active or passive safety feature results in better safety, according to the TRACE team who has evaluated safety packages in today’s vehicles – five-star Euro NCAP features, Emergency Brake Assist (EBA), Electronic Stability Control (ESC), or combinations.

“In general, the safety gains are even higher for higher injury severity levels,” says Yves Page who was TRACE’s coordinator while working at the Laboratory of Accidentology, Biomechanics and Studies of Human Behaviour at PSA Peugeot Citroën Renault.

The difference between a five-star rated car fitted with EBA and ESC and a four-star rated one without these features is striking, he suggests. So-called “injury accidents” would be reduced by 47%, he says, while severe to fatal accidents would be cut by as much as 70%.

Full and future picture

TRACE also scanned the future-scape and evaluated the expected benefits of a number of promising safety and embedded systems, such as tyre pressure monitoring, lane keeping support, cornering brake control, traffic sign recognition, intelligent speed adaptation, rear-light brake force display, ‘alcolock’ key, drowsy driver detection, blind-spot detection, and more.

The greatest additional benefits – a 6-10% improvement in terms of injuries – are expected from speed adaptation systems and systems related to collision/crash warnings and prevention, reports TRACE. The drowsy driver and alcohol detection lockout features were appreciable in their benefit, while systems like tyre deflation monitoring and advanced rear- and front-light solutions were less prominent.

TRACE was funded by the ICT strand of the EU’s Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90364

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>