Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risk of stroke associated with bypass surgery technique designed to prevent organ damage

23.04.2010
The standard practice of cooling and then rewarming a patient to prevent organ damage during cardiac bypass surgery may impair the body's mechanism that controls blood flow to the brain, potentially increasing the patient's risk of stroke, new research from Johns Hopkins suggests.

"For reasons we don't yet understand, it appears that during rewarming, an autoregulation mechanism that protects the brain from fluctuations in the body's blood pressure can malfunction," says Brijen Joshi, M.D., the study's leader and a research fellow in anesthesiology and critical care medicine at the Johns Hopkins University School of Medicine. "This could increase the chances that the brain won't get enough blood flow and oxygen and increase the risk of brain injury."

As many as five percent of cardiac bypass patients, the study finds, wake up from surgery with significant loss of controlled movement or speech caused by an interruption of blood flow to the brain — a stroke — but physicians have been unable to explain why. In a report on the observational study, published in the journal Anesthesia & Analgesia, the scientists suggest that the culprit could be a breakdown of this blood-flow regulation mechanism.

That mechanism seems to fail, they say, as doctors work to restore body temperature to its normal 36 degrees Celsius after cooling it to protect organs and facilitate heart bypass. If the autoregulation mechanism stops working, blood flow in the brain becomes entirely dependent upon blood pressure and can allow too much or too little blood to flow into the brain — a dangerous result.

"You come in with a heart problem and now you can't move a limb or you can't speak and you have a neurological problem," says Joshi. "We have to figure out why this is happening."

As part of the study, Joshi and his colleagues monitored the blood pressure and brain blood flow of 127 patients undergoing standard, lengthy cardiac bypass surgery during which they spent two hours on a heart-lung machine that circulated their blood for them. Their bodies were cooled to below 34 degrees Celsius and then rewarmed. Eleven patients undergoing shorter bypass operations were kept at normal body temperature throughout and served as a control group.

After surgery, none of the control patients had experienced any neurological problems, while seven of the standard group had strokes and one experienced a transient ischemic attack, or TIA, a brief interruption of blood flow that's considered a harbinger for future stroke.

The study notes that while cooling and rewarming to protect organs during bypass surgery may impair autoregulation and increase the risk of stroke, there is little evidence that this practice is necessary.

Joshi and his colleagues say more research is necessary into the precise causes of the malfunction in the brain's blood-flow regulation mechanism. Currently, there is no good monitor to alert doctors in real time that blood flow in the brain is too low or too high, says Charles W. Hogue Jr., M.D., associate professor of anesthesiology and critical care medicine at the Johns Hopkins University School of Medicine and the study's principal investigator.

"We measure the heart, blood pressure, kidney function and more during surgery," Hogue says. "But there's a huge need for a better monitor for the brain."

To that end, the team has been developing a monitoring device that, during bypass surgery, would measure blood flow to the brain using near infrared spectroscopy, along with software that tracks changes in individual patients as they happen. When the body gets to the point where it isn't properly regulating blood flow in the brain, doctors don't know it in real time. If a monitoring device could alert doctors that blood flow to the brain had declined, they could quickly adjust blood pressure, restoring adequate flow and potentially avoid a stroke.

"Once we find the point at which this mechanism fails, we might be able to keep blood pressure above that threshold and prevent brain injury," Joshi says.

The study was funded through grants from the American Heart Association, the National Institutes of Health and the Foundation for Anesthesia Education and Research Training.

Other Johns Hopkins researchers who worked on the study include Kenneth Brady, M.D.; Jennifer Lee, M.D.; Blaine Easley, M.D.; and Rabi Panigrahi, M.D.

For more information: http://www.hopkinsmedicine.org/anesthesiology_critical_care_medicine/

research/experts/research_faculty/bios/hogue.html

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>