Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risk of stroke associated with bypass surgery technique designed to prevent organ damage

23.04.2010
The standard practice of cooling and then rewarming a patient to prevent organ damage during cardiac bypass surgery may impair the body's mechanism that controls blood flow to the brain, potentially increasing the patient's risk of stroke, new research from Johns Hopkins suggests.

"For reasons we don't yet understand, it appears that during rewarming, an autoregulation mechanism that protects the brain from fluctuations in the body's blood pressure can malfunction," says Brijen Joshi, M.D., the study's leader and a research fellow in anesthesiology and critical care medicine at the Johns Hopkins University School of Medicine. "This could increase the chances that the brain won't get enough blood flow and oxygen and increase the risk of brain injury."

As many as five percent of cardiac bypass patients, the study finds, wake up from surgery with significant loss of controlled movement or speech caused by an interruption of blood flow to the brain — a stroke — but physicians have been unable to explain why. In a report on the observational study, published in the journal Anesthesia & Analgesia, the scientists suggest that the culprit could be a breakdown of this blood-flow regulation mechanism.

That mechanism seems to fail, they say, as doctors work to restore body temperature to its normal 36 degrees Celsius after cooling it to protect organs and facilitate heart bypass. If the autoregulation mechanism stops working, blood flow in the brain becomes entirely dependent upon blood pressure and can allow too much or too little blood to flow into the brain — a dangerous result.

"You come in with a heart problem and now you can't move a limb or you can't speak and you have a neurological problem," says Joshi. "We have to figure out why this is happening."

As part of the study, Joshi and his colleagues monitored the blood pressure and brain blood flow of 127 patients undergoing standard, lengthy cardiac bypass surgery during which they spent two hours on a heart-lung machine that circulated their blood for them. Their bodies were cooled to below 34 degrees Celsius and then rewarmed. Eleven patients undergoing shorter bypass operations were kept at normal body temperature throughout and served as a control group.

After surgery, none of the control patients had experienced any neurological problems, while seven of the standard group had strokes and one experienced a transient ischemic attack, or TIA, a brief interruption of blood flow that's considered a harbinger for future stroke.

The study notes that while cooling and rewarming to protect organs during bypass surgery may impair autoregulation and increase the risk of stroke, there is little evidence that this practice is necessary.

Joshi and his colleagues say more research is necessary into the precise causes of the malfunction in the brain's blood-flow regulation mechanism. Currently, there is no good monitor to alert doctors in real time that blood flow in the brain is too low or too high, says Charles W. Hogue Jr., M.D., associate professor of anesthesiology and critical care medicine at the Johns Hopkins University School of Medicine and the study's principal investigator.

"We measure the heart, blood pressure, kidney function and more during surgery," Hogue says. "But there's a huge need for a better monitor for the brain."

To that end, the team has been developing a monitoring device that, during bypass surgery, would measure blood flow to the brain using near infrared spectroscopy, along with software that tracks changes in individual patients as they happen. When the body gets to the point where it isn't properly regulating blood flow in the brain, doctors don't know it in real time. If a monitoring device could alert doctors that blood flow to the brain had declined, they could quickly adjust blood pressure, restoring adequate flow and potentially avoid a stroke.

"Once we find the point at which this mechanism fails, we might be able to keep blood pressure above that threshold and prevent brain injury," Joshi says.

The study was funded through grants from the American Heart Association, the National Institutes of Health and the Foundation for Anesthesia Education and Research Training.

Other Johns Hopkins researchers who worked on the study include Kenneth Brady, M.D.; Jennifer Lee, M.D.; Blaine Easley, M.D.; and Rabi Panigrahi, M.D.

For more information: http://www.hopkinsmedicine.org/anesthesiology_critical_care_medicine/

research/experts/research_faculty/bios/hogue.html

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>