Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risk-based passenger screening could make air travel safer

01.02.2012
Anyone who has flown on a commercial airline since 2001 is well aware of increasingly strict measures at airport security checkpoints.

A study by Illinois researchers demonstrates that intensive screening of all passengers actually makes the system less secure by overtaxing security resources.

University of Illinois computer science and mathematics professor Sheldon H. Jacobson, in collaboration with Adrian J. Lee at the Central Illinois Technology and Education Research Institute, explored the benefit of matching passenger risk with security assets. The pair detailed their work in the journal Transportation Science.

“A natural tendency, when limited information is available about from where the next threat will come, is to overestimate the overall risk in the system,” Jacobson said. “This actually makes the system less secure by over-allocating security resources to those in the system that are low on the risk scale relative to others in the system.”

When overestimating the population risk, a larger proportion of high-risk passengers are designated for too little screening while a larger proportion of low-risk passengers are subjected to too much screening. With security resources devoted to the many low-risk passengers, those resources are less able to identify or address high-risk passengers. Nevertheless, current policies favor broad screening.

“One hundred percent checked baggage screening and full-body scanning of all passengers is the antithesis of a risk-based system,” Jacobson said. “It treats all passengers and their baggage as high-risk threats. The cost of such a system is prohibitive, and it makes the air system more vulnerable to successful attacks by sub-optimally allocating security assets.”

In an effort to address this problem, the Transportation Security Administration (TSA) introduced a pre-screening program in 2011, available to select passengers on a trial basis. Jacobson’s previous work has indicated that resources could be more effectively invested if the lowest-risk segments of the population – frequent travelers, for instance – could pass through security with less scrutiny since they are “known” to the system.

A challenge with implementing such a system is accurately assessing the risk of each passenger and using such information appropriately. In the new study, Jacobson and Lee developed three algorithms dealing with risk uncertainty in the passenger population. Then, they ran simulations to demonstrate how their algorithms, applied to a risk-based screening method, could estimate risk in the overall passenger population – instead of focusing on each individual passenger – and how errors in this estimation procedure can be mitigated to reduce the risk to the overall system.

They found that risk-based screening, such as the TSA’s new Pre-Check program, increases the overall expected security. Rating a passenger’s risk relative to the entire flying population allows more resources to be devoted to passengers with a high risk relative to the passenger population.

The paper also discusses scenarios of how terrorists may attempt to thwart the security system – for example, blending in with a high-risk crowd so as not to stand out – and provides insights into how risk-based systems can be designed to mitigate the impact of such activities.

“The TSA’s move toward a risk-based system is designed to more accurately match security assets with threats to the air system,” Jacobson said. “The ideal situation is to create a system that screens passengers commensurate with their risk. Since we know that very few people are a threat to the system, relative risk rather than absolute risk provides valuable information.”

The National Science Foundation and the U.S. Air Force Office of Scientific Research supported this work.
Editor’s notes: To contact Sheldon Jacobson,
call 217-244-7275; email shj@illinois.edu.
The paper, “Addressing Passenger Risk Uncertainty,” is available online
http://transci.journal.informs.org/content/early/2011/12/21/trsc.1110.0384.
full.pdf+html

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>