Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Risk-based passenger screening could make air travel safer

Anyone who has flown on a commercial airline since 2001 is well aware of increasingly strict measures at airport security checkpoints.

A study by Illinois researchers demonstrates that intensive screening of all passengers actually makes the system less secure by overtaxing security resources.

University of Illinois computer science and mathematics professor Sheldon H. Jacobson, in collaboration with Adrian J. Lee at the Central Illinois Technology and Education Research Institute, explored the benefit of matching passenger risk with security assets. The pair detailed their work in the journal Transportation Science.

“A natural tendency, when limited information is available about from where the next threat will come, is to overestimate the overall risk in the system,” Jacobson said. “This actually makes the system less secure by over-allocating security resources to those in the system that are low on the risk scale relative to others in the system.”

When overestimating the population risk, a larger proportion of high-risk passengers are designated for too little screening while a larger proportion of low-risk passengers are subjected to too much screening. With security resources devoted to the many low-risk passengers, those resources are less able to identify or address high-risk passengers. Nevertheless, current policies favor broad screening.

“One hundred percent checked baggage screening and full-body scanning of all passengers is the antithesis of a risk-based system,” Jacobson said. “It treats all passengers and their baggage as high-risk threats. The cost of such a system is prohibitive, and it makes the air system more vulnerable to successful attacks by sub-optimally allocating security assets.”

In an effort to address this problem, the Transportation Security Administration (TSA) introduced a pre-screening program in 2011, available to select passengers on a trial basis. Jacobson’s previous work has indicated that resources could be more effectively invested if the lowest-risk segments of the population – frequent travelers, for instance – could pass through security with less scrutiny since they are “known” to the system.

A challenge with implementing such a system is accurately assessing the risk of each passenger and using such information appropriately. In the new study, Jacobson and Lee developed three algorithms dealing with risk uncertainty in the passenger population. Then, they ran simulations to demonstrate how their algorithms, applied to a risk-based screening method, could estimate risk in the overall passenger population – instead of focusing on each individual passenger – and how errors in this estimation procedure can be mitigated to reduce the risk to the overall system.

They found that risk-based screening, such as the TSA’s new Pre-Check program, increases the overall expected security. Rating a passenger’s risk relative to the entire flying population allows more resources to be devoted to passengers with a high risk relative to the passenger population.

The paper also discusses scenarios of how terrorists may attempt to thwart the security system – for example, blending in with a high-risk crowd so as not to stand out – and provides insights into how risk-based systems can be designed to mitigate the impact of such activities.

“The TSA’s move toward a risk-based system is designed to more accurately match security assets with threats to the air system,” Jacobson said. “The ideal situation is to create a system that screens passengers commensurate with their risk. Since we know that very few people are a threat to the system, relative risk rather than absolute risk provides valuable information.”

The National Science Foundation and the U.S. Air Force Office of Scientific Research supported this work.
Editor’s notes: To contact Sheldon Jacobson,
call 217-244-7275; email
The paper, “Addressing Passenger Risk Uncertainty,” is available online

Liz Ahlberg | University of Illinois
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>