Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ride-sharing could cut cabs' road time by 30 percent

02.09.2014

A new analytic framework enables analysis of GPS data on 150 million cab rides in New York City

Cellphone apps that find users car rides in real time are exploding in popularity: The car-service company Uber was recently valued at $18 billion, and even as it faces legal wrangles, a number of companies that provide similar services with licensed taxi cabs have sprung up.

What if the taxi-service app on your cellphone had a button on it that let you indicate that you were willing to share a ride with another passenger? How drastically could cab-sharing reduce traffic, fares, and carbon dioxide emissions?

Authoritatively answering that question requires analyzing huge volumes of data, which hasn't been computationally feasible with traditional methods. But in today's issue of the Proceedings of the National Academies of Sciences, researchers at MIT, Cornell University, and the Italian National Research Council's Institute for Informatics and Telematics present a new technique that enabled them to exhaustively analyze 150 million trip records collected from more than 13,000 New York City cabs over the course of a year.

Their conclusions: If passengers had been willing to tolerate no more than five minutes in delays per trip, almost 95 percent of the trips could have been shared. The optimal combination of trips would have reduced total travel time by 40 percent, with corresponding reductions in operational costs and carbon dioxide emissions.

"Of course, nobody should ever be forced to share a vehicle," says Carlo Ratti, professor of the practice in MIT's Department of Urban Studies and Planning (DUSP) and one of the paper's coauthors. "However, our research shows what would happen if people have sharing as an option. This is more than a theoretical exercise, with services such as Uber Pool bringing these ideas into practice."

Finding the optimal combination of trips does require foreknowledge of trips' starting times: For instance, a 30-minute trip the length of Manhattan might be combined with a 10-minute trip beginning 15 minutes later. But that kind of advance planning is unlikely if the passengers are using cellphone apps. So the researchers also analyzed the data on the assumption that only trips starting within a minute of each other could be combined. Even then, they still found a 32 percent reduction in total travel time.

"We think that with the potential of a 30 percent reduction in operational costs, there is plenty of room for redistributing these benefits to customers, because we have to offer them lower fares; to drivers, because we have to incentivize them to belong to this system; to companies; and of course, there is a benefit for the community," says Paolo Santi, a visiting scientist in DUSP and first author on the paper.

In fact, Santi says, the results of his and his colleagues' analysis were so striking that they asked Cornell mathematician Steven Strogatz to review their methodology. Strogatz is a co-author on the paper, as are Ratti and postdoc Stanislav Sobolevsky, both of MIT's Senseable City Lab. Rounding out the author list are Michael Szell, who was a postdoc in the Senseable City lab when the work was done and is now at Northeastern University, and Giovanni Resta, a researcher at Santi's home institution, the Institute for Informatics and Telematics.

In analyzing taxi data for ride-sharing opportunities, "Typically, the approach that was taken was a variation of the so-called 'traveling-salesman problem,'" Santi explains. "This is the basic algorithmic framework, and then there are extensions for sharing."

The traveling-salesman problem asks whether, given a set of cities and the travel times between them, there is a route that would allow a traveling salesman to reach all of them within some time limit. Unfortunately, the traveling-salesman problem is also an example — indeed, perhaps the most famous example — of an NP-complete problem, meaning that even for moderate-sized data sets, it can't (as far as anyone knows) be solved in a reasonable amount of time.

So Santi and his colleagues took a different approach. First, they characterize every taxi trip according to four measurements: the time and GPS coordinates of both the pickup and the dropoff. Then, for each trip, their algorithm identifies the set of other trips that overlap with it — the ones that begin before it ends. Then it determines whether the trip they're examining can be combined with any of those other trips without exceeding the delay threshold. On average, any given trip is "shareable" with about 100 other trips.

Next, the algorithm represents the shareability of all 150 million trips in the database as a graph. A graph is a mathematical abstraction consisting of nodes — usually depicted as circles — and edges — usually depicted as lines between nodes. In this case, the nodes represent trips and the edges represent their shareability.

The graphical representation itself was the key to the researchers' analysis. With that in hand, well-known algorithms can efficiently find the optimal matchings to either maximize sharing or minimize travel time.

The researchers also conducted experiments to ensure that their matching algorithm would work in real time, if it ran on a server used to coordinate data from cellphones running a taxi-sharing app. They found that, even running on a single Linux box, it could find optimal matchings for about 100,000 trips in a tenth of a second, whereas the GPS data indicated that on average, about 300 new taxi trips were initiated in New York every minute.

Finally, an online application designed by Szell, HubCab, allows people to explore the taxi data themselves, using a map of New York as an interface.

###

Written by Larry Hardesty, MIT News Office

Andrew Carleen | Eurek Alert!
Further information:
http://www.mit.edu

Further reports about: GPS MIT Ride-sharing Telematics algorithm cellphone dioxide emissions reduction

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>