Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ride-sharing could cut cabs' road time by 30 percent


A new analytic framework enables analysis of GPS data on 150 million cab rides in New York City

Cellphone apps that find users car rides in real time are exploding in popularity: The car-service company Uber was recently valued at $18 billion, and even as it faces legal wrangles, a number of companies that provide similar services with licensed taxi cabs have sprung up.

What if the taxi-service app on your cellphone had a button on it that let you indicate that you were willing to share a ride with another passenger? How drastically could cab-sharing reduce traffic, fares, and carbon dioxide emissions?

Authoritatively answering that question requires analyzing huge volumes of data, which hasn't been computationally feasible with traditional methods. But in today's issue of the Proceedings of the National Academies of Sciences, researchers at MIT, Cornell University, and the Italian National Research Council's Institute for Informatics and Telematics present a new technique that enabled them to exhaustively analyze 150 million trip records collected from more than 13,000 New York City cabs over the course of a year.

Their conclusions: If passengers had been willing to tolerate no more than five minutes in delays per trip, almost 95 percent of the trips could have been shared. The optimal combination of trips would have reduced total travel time by 40 percent, with corresponding reductions in operational costs and carbon dioxide emissions.

"Of course, nobody should ever be forced to share a vehicle," says Carlo Ratti, professor of the practice in MIT's Department of Urban Studies and Planning (DUSP) and one of the paper's coauthors. "However, our research shows what would happen if people have sharing as an option. This is more than a theoretical exercise, with services such as Uber Pool bringing these ideas into practice."

Finding the optimal combination of trips does require foreknowledge of trips' starting times: For instance, a 30-minute trip the length of Manhattan might be combined with a 10-minute trip beginning 15 minutes later. But that kind of advance planning is unlikely if the passengers are using cellphone apps. So the researchers also analyzed the data on the assumption that only trips starting within a minute of each other could be combined. Even then, they still found a 32 percent reduction in total travel time.

"We think that with the potential of a 30 percent reduction in operational costs, there is plenty of room for redistributing these benefits to customers, because we have to offer them lower fares; to drivers, because we have to incentivize them to belong to this system; to companies; and of course, there is a benefit for the community," says Paolo Santi, a visiting scientist in DUSP and first author on the paper.

In fact, Santi says, the results of his and his colleagues' analysis were so striking that they asked Cornell mathematician Steven Strogatz to review their methodology. Strogatz is a co-author on the paper, as are Ratti and postdoc Stanislav Sobolevsky, both of MIT's Senseable City Lab. Rounding out the author list are Michael Szell, who was a postdoc in the Senseable City lab when the work was done and is now at Northeastern University, and Giovanni Resta, a researcher at Santi's home institution, the Institute for Informatics and Telematics.

In analyzing taxi data for ride-sharing opportunities, "Typically, the approach that was taken was a variation of the so-called 'traveling-salesman problem,'" Santi explains. "This is the basic algorithmic framework, and then there are extensions for sharing."

The traveling-salesman problem asks whether, given a set of cities and the travel times between them, there is a route that would allow a traveling salesman to reach all of them within some time limit. Unfortunately, the traveling-salesman problem is also an example — indeed, perhaps the most famous example — of an NP-complete problem, meaning that even for moderate-sized data sets, it can't (as far as anyone knows) be solved in a reasonable amount of time.

So Santi and his colleagues took a different approach. First, they characterize every taxi trip according to four measurements: the time and GPS coordinates of both the pickup and the dropoff. Then, for each trip, their algorithm identifies the set of other trips that overlap with it — the ones that begin before it ends. Then it determines whether the trip they're examining can be combined with any of those other trips without exceeding the delay threshold. On average, any given trip is "shareable" with about 100 other trips.

Next, the algorithm represents the shareability of all 150 million trips in the database as a graph. A graph is a mathematical abstraction consisting of nodes — usually depicted as circles — and edges — usually depicted as lines between nodes. In this case, the nodes represent trips and the edges represent their shareability.

The graphical representation itself was the key to the researchers' analysis. With that in hand, well-known algorithms can efficiently find the optimal matchings to either maximize sharing or minimize travel time.

The researchers also conducted experiments to ensure that their matching algorithm would work in real time, if it ran on a server used to coordinate data from cellphones running a taxi-sharing app. They found that, even running on a single Linux box, it could find optimal matchings for about 100,000 trips in a tenth of a second, whereas the GPS data indicated that on average, about 300 new taxi trips were initiated in New York every minute.

Finally, an online application designed by Szell, HubCab, allows people to explore the taxi data themselves, using a map of New York as an interface.


Written by Larry Hardesty, MIT News Office

Andrew Carleen | Eurek Alert!
Further information:

Further reports about: GPS MIT Ride-sharing Telematics algorithm cellphone dioxide emissions reduction

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>