Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers of VTT, the University of Turku and the University of Heidelberg discover new information on spreading of cancer

01.07.2009
A joint research group of VTT Technical Research Centre of Finland and the University of Turku, led by Professor Johanna Ivaska, has discovered a mechanism lung cancer cells use when spreading into the body to form metastases.

The study has been published in Science Signaling on 30th June 2009. In cooperation with the University of Heidelberg, they have also found a factor controlling the spreading of several different cancer types.

The common feature in both findings is that they explain the lethal ability of cancer cells to “start running” and spread from the original tumour to other parts of the body.

Cancer is lethal because of its ability to spread into the body to form metastases. Previously, it was thought that spreading cancer cells lose the factors that bind them to other cells of the tumour, and this enables the cells to detach and migrate within the body.

Videos made by the research group’s PhD student Saara Tuomi on migrating lung cancer cells revealed to the group that the cells move using their adhesion receptors in a manner that was previously unknown. The new finding of the research group reveals that cancer cells are able to change in such a manner that a factor that previously assisted them in staying in place starts to assist the cells’ adhesion receptors and is thus the precondition needed by the cells to migrate. The group found evidence suggesting that the tumours of lung cancer patients who died because of metastases had cells that started moving using this previously unknown mechanism.

The finding opens new opportunities for the development of medicine because the migration mechanism is not vital for normal cells. The research results have been published on 30 June 2009 in the cellular biology journal Science Signaling, daughter journal of the top scientific journal Science.

The research group led by Professor Johanna Ivaska found in cooperation with researchers of the University of Heidelberg a new factor that controls the appearance of cancer cell adhesion receptors in several cancer types. The new protein has been named SCAI. The name means a cancer invasion inhibitor. The research shows that many cancers are able to eliminate the suppressing factor. This result is the cancer adding the number of its adhesion receptors on the surface of the cells and starting effective spreading. Thus, the fact that the suppressing factor is eliminated makes it possible for the cancer to spread. The research results were published in May 2009 in top scientific journal Nature Cell Biology.

When combined, these findings increase the understanding of how cancer spreads and may influence future trends in cancer research.

Media material: http://www.vtt.fi/news/2009/06302009.jsp?lang=en
- Figure: http://www.vtt.fi/img/news/2009/ivaska_liikkumismekanismi/liikkumismekanismi
_300dpi.JPG
A cancer cell starting to run, detaching itself from the rest of the tumour
- Video: http://www.vtt.fi/files/news/2009/ivaska_tuomi_LOW_resolution.mov
Video shows how lung cancer cells move in a cell culture dish. Similar movement is allegedly a prerequisite for the spreading of the cancer also in human organism. Joint research group of VTT and the University of Turku have found a mechanism that regulates the ability of these cells to move as seen in the video. On the grounds of the findings cancer cells can now be treated to prevent the movement.

Publications:
Tuomi, S., Mai, A., Nevo, J., Öhman, T.J., Gahmberg, C.G., Parker, P.J. and Ivaska, J. (2009) PKC regulation of an 5 integrin-ZO-1 complex controls lamellae formation in migrating cancer cells. Science Signaling.

Brandt DT, Baarlink C, Kitzing TM, Kremmer E, Ivaska J, Nollau P, Grosse R. (2009) SCAI acts as a suppressor of cancer cell invasion through the transcriptional control of 1-integrin. Nat Cell Biol. 2009 May; 11(5): 557-68.


Further information

VTT Technical Research Centre of Finland
Professor Johanna Ivaska
Tel. +358 20 722 2807
johanna.ivaska@vtt.fi

Further information on VTT:
Senior Vice President
Olli Ernvall
Tel. +358 20 722 6747
olli.ernvall@vtt.fi
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders.

Prof Johanna Ivaska | VTT info
Further information:
http://www.vtt.fi/?lang=en

Further reports about: SCAI Science TV VTT cancer cells cell death lung cancer lung cancer cells metastases start running

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>