Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers of VTT, the University of Turku and the University of Heidelberg discover new information on spreading of cancer

01.07.2009
A joint research group of VTT Technical Research Centre of Finland and the University of Turku, led by Professor Johanna Ivaska, has discovered a mechanism lung cancer cells use when spreading into the body to form metastases.

The study has been published in Science Signaling on 30th June 2009. In cooperation with the University of Heidelberg, they have also found a factor controlling the spreading of several different cancer types.

The common feature in both findings is that they explain the lethal ability of cancer cells to “start running” and spread from the original tumour to other parts of the body.

Cancer is lethal because of its ability to spread into the body to form metastases. Previously, it was thought that spreading cancer cells lose the factors that bind them to other cells of the tumour, and this enables the cells to detach and migrate within the body.

Videos made by the research group’s PhD student Saara Tuomi on migrating lung cancer cells revealed to the group that the cells move using their adhesion receptors in a manner that was previously unknown. The new finding of the research group reveals that cancer cells are able to change in such a manner that a factor that previously assisted them in staying in place starts to assist the cells’ adhesion receptors and is thus the precondition needed by the cells to migrate. The group found evidence suggesting that the tumours of lung cancer patients who died because of metastases had cells that started moving using this previously unknown mechanism.

The finding opens new opportunities for the development of medicine because the migration mechanism is not vital for normal cells. The research results have been published on 30 June 2009 in the cellular biology journal Science Signaling, daughter journal of the top scientific journal Science.

The research group led by Professor Johanna Ivaska found in cooperation with researchers of the University of Heidelberg a new factor that controls the appearance of cancer cell adhesion receptors in several cancer types. The new protein has been named SCAI. The name means a cancer invasion inhibitor. The research shows that many cancers are able to eliminate the suppressing factor. This result is the cancer adding the number of its adhesion receptors on the surface of the cells and starting effective spreading. Thus, the fact that the suppressing factor is eliminated makes it possible for the cancer to spread. The research results were published in May 2009 in top scientific journal Nature Cell Biology.

When combined, these findings increase the understanding of how cancer spreads and may influence future trends in cancer research.

Media material: http://www.vtt.fi/news/2009/06302009.jsp?lang=en
- Figure: http://www.vtt.fi/img/news/2009/ivaska_liikkumismekanismi/liikkumismekanismi
_300dpi.JPG
A cancer cell starting to run, detaching itself from the rest of the tumour
- Video: http://www.vtt.fi/files/news/2009/ivaska_tuomi_LOW_resolution.mov
Video shows how lung cancer cells move in a cell culture dish. Similar movement is allegedly a prerequisite for the spreading of the cancer also in human organism. Joint research group of VTT and the University of Turku have found a mechanism that regulates the ability of these cells to move as seen in the video. On the grounds of the findings cancer cells can now be treated to prevent the movement.

Publications:
Tuomi, S., Mai, A., Nevo, J., Öhman, T.J., Gahmberg, C.G., Parker, P.J. and Ivaska, J. (2009) PKC regulation of an 5 integrin-ZO-1 complex controls lamellae formation in migrating cancer cells. Science Signaling.

Brandt DT, Baarlink C, Kitzing TM, Kremmer E, Ivaska J, Nollau P, Grosse R. (2009) SCAI acts as a suppressor of cancer cell invasion through the transcriptional control of 1-integrin. Nat Cell Biol. 2009 May; 11(5): 557-68.


Further information

VTT Technical Research Centre of Finland
Professor Johanna Ivaska
Tel. +358 20 722 2807
johanna.ivaska@vtt.fi

Further information on VTT:
Senior Vice President
Olli Ernvall
Tel. +358 20 722 6747
olli.ernvall@vtt.fi
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders.

Prof Johanna Ivaska | VTT info
Further information:
http://www.vtt.fi/?lang=en

Further reports about: SCAI Science TV VTT cancer cells cell death lung cancer lung cancer cells metastases start running

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>