Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers urge reclassification of traumatic brain injury as chronic disease

27.08.2010
Study shows brain trauma associated with lifelong conditions that affect quality of life and mortality

Traumatic brain injury, currently considered a singular event by the insurance industry and many health care providers, is instead the beginning of an ongoing process that impacts multiple organ systems and may cause or accelerate other diseases and disorders that can reduce life expectancy, according to research from the University of Texas Medical Branch at Galveston.

As such, traumatic brain injury should be defined and managed as a chronic disease to ensure that patients receive appropriate care and that future research is directed at discovering therapies that may interrupt the disease processes months or even years after the initiating injury, say co-authors Dr. Brent Masel, a clinical associate professor in UTMB's department of neurology and Dr. Douglas DeWitt, director of the Moody Center for Traumatic Brain & Spinal Cord Injury Research/Mission Connect and professor in the department of anesthesiology. Masel also serves as president and director of the Transitional Learning Center in Galveston, which for more than 25 years has provided survivors of brain injury with the special rehabilitation services they need to re-enter the community.

The literature review, which appears in the current issue of The Journal of Neurotrauma, examines 25 years of research on the effects of brain injury, including its impact on the central nervous system and on cognitive and motor functions.

Traumatic brain injury occurs when a sudden trauma causes damage to the brain and can be classified as mild, moderate or severe, depending on the extent of the damage. While many patients recover completely, more than 90,000 become disabled each year in the U.S. alone. It is estimated that more than 3.5 million Americans are presently disabled by brain injuries – suffering lifelong conditions as a result.

"Traumatic brain injury fits the World Health Organization's definition of a chronic disease, yet the U.S. health care system generally views it as a one-time injury that heals the way a broken bone does," says Masel. "Only by reimbursing and managing brain injuries on par with other chronic diseases will patients get the long-term treatment and support they need and deserve."

The researchers add that re-classifying traumatic brain injury as a chronic disease may help to provide brain injury researchers with the additional funding required to investigate a potential cure.

Masel and DeWitt's review compiled extensive evidence that brain trauma initiates a disease process that severely affects cognitive function, physiological processes and quality of life. These effects can prevent patients from fully reentering society post-injury and may ultimately contribute to death months or years later. Specifically, traumatic brain injury is strongly associated with:

Neurological disorders that reduces life expectancy, including epilepsy – for which traumatic brain injury is the leading cause in young adults – and obstructive sleep apnea, which is associated with reduced cognition and severe cardiac arrhythmias during sleep.

Neurodegenerative disorders that lead to gradual declines in cognitive function after injury, including Alzheimer's dementia, Parkinson's disease and chronic traumatic encephalopathy (also known as "punch drunk" and characterized by disturbed coordination, gait, slurred speech and tremors). However, research shows that those who receive more therapy in the early post-injury months, irrespective of severity of injury and level of neuropsychological impairment, were less likely to show decline over the long-term. Age is also a factor in cognitive outcome after brain injury, with older patients showing greater decline.

A host of neuroendocrine disorders, possibly caused by complex hormonal responses in the hypothalamic-pituitary system that ultimately lead to acute and/or chronic post-traumatic hypopituitarism – the decreased secretion of hormones normally produced by the pituitary gland, which can result in several related conditions, including growth hormone deficiency and hypothyroidism.

Psychiatric and psychological diseases, which are among the most disabling consequences of traumatic brain injury. Many individuals with mild brain trauma and the majority of those who survive moderate-to-severe brain injury are left with significant long-term neurobehavioral conditions. These range from aggression, confusion and agitation to obsessive-compulsive disorders, anxiety/mood/ psychotic disorders, major depression and substance abuse. It is also associated with high rates of suicide.

Non-neurologic disorders, including sexual dysfunction, which affects 40-60 percent of patients; incontinence; musculoskeletal dysfunction, or spasticity that results in abnormal motor patterns that may limit mobility and independence; and metabolic dysfunction, as brain injury appears to impact the way the body absorbs, utilizes and converts amino acids, which play a critical role in brain function.

According to Masel and DeWitt, research suggests that the progression of symptoms seen in chronic traumatic brain injury patients may be due, in part, to defective apoptotic cell death – a natural process in which cells die because they are genetically programmed to do so or because of injury or disease. It is possible that the abnormal apoptotic cell death is triggered by brain trauma, leading to an accelerated decline in cognitive function and development of disease.

"Media coverage of traumatic brain injury among soldiers and athletes, especially football players, has highlighted the serious health problems resulting from brain injury that are experienced later in life and helped raise awareness among the general public," says DeWitt. "But until traumatic brain injury is recognized as a chronic disease, research funding won't be adequate for the work that is needed to help patients minimize or avoid these outcomes."

ABOUT UTMB

Established in 1891, Texas' first academic health center comprises four health sciences schools, three institutes for advanced study, a research enterprise that includes one of only two national laboratories dedicated to the safe study of infectious threats to human health, and a health system offering a full range of primary and specialized medical services throughout Galveston County and the Texas Gulf Coast region. UTMB is a component of the University of Texas System.

ABOUT THE TRANSITIONAL LEARNING CENTER

The Transitional Learning Center at Galveston and in Lubbock Texas (TLC) is a pioneer in the field of brain injury rehabilitation. Since 1982, TLC has been providing survivors of brain injury with the special rehabilitation services they need to re-enter the community. TLC's approach encompasses the trifold mission of treatment, research and education.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>