Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unravel protein's elusive role in embryo and disease development

03.03.2011
Research 'solves a longstanding mystery regarding the regulation of cell death pathways;' could lead to better cancer and autoimmune disease drugs

Reporting in Nature, scientists from Thomas Jefferson University have determined that a single protein called FADD controls multiple cell death pathways, a discovery that could lead to better, more targeted autoimmune disease and cancer drugs.

Twelve years ago, internationally-known immunologist Jianke Zhang, Ph.D., an associate professor in the Department of Microbiology and Immunology at Thomas Jefferson University, realized FADD, which stands for Fas-Associated protein with Death Domain, played an important role in embryonic development and the onset of some diseases, but he didn't know exactly why until now.

In the paper published online March 2, Dr. Zhang and researchers show this protein regulates not one but two types of cell deaths pivotal for embryo and disease development. It is now known that FADD causes apoptosis, the "healthy" cell death, while keeping necrosis, the "toxic" one, at bay.

Understanding this pathway is instrumental in developing drugs with selectivity and fewer side effects, said Dr. Zhang, a member of the Kimmel Cancer Center at Jefferson,

"This work has direct impact on our understanding of diseases: cancer, autoimmune disease, immune-deficiency disease," he said. "This is the one gene that regulates these two processes in cells, so now we can find targeted drugs to control the cell death process."

The research suggests that with the absence or variation in expression of this one protein, an embryo may not develop properly or a person may develop disease later in life.

"This breakthrough is a testimony to Dr. Zhang's research acumen and dogged determination to solve a longstanding mystery regarding the regulation of cell death pathways," said Tim Manser, Ph.D., professor and chair of the Department of Microbiology and Immunology at Jefferson. "It is gratifying to know that Thomas Jefferson University provides the research infrastructure that allows outstanding researchers like Dr. Zhang to make seminal discoveries, such as those reported in the Nature paper."

FADD's importance in embryogenesis and lymphocyte death response has been known, but the mechanism that underlies these functions in FADD has remained elusive.

Researchers found that mice that did not express FADD contained raised levels of RIP1, Receptor-Interacting Protein 1, an important protein that mediates necrosis and the apoptotic processes, and their embryonic development failed due to massive necrosis.

"When the FADD-mediated death process is deregulated, we will produce white bloods cells that will attack our own tissue, which is the cause of auto-immune diseases, such as arthritis and lupus," said Dr. Zhang. "And without the necessary cell deaths that are required for tumor surveillance, humans could develop cancer."

There are drugs currently under development today that activate TNF-a-related apoptosis-inducing ligand (TRAIL) death receptor signaling, which induces apoptosis through FADD in cancer cells specifically, but its mechanisms are not well understood and the treatment not perfected. There are also tumor cells that are resistant to TRAIL-induced apoptosis for unknown causes.

"The killing of these tumor cells is not efficient, and this paper actually figured out why," said Dr. Zhang. "We now know that the FADD protein, while required for apoptotic death, is inhibiting necrotic death in tumor cells."

Steve Graff | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

Scientist from Kiel University coordinates Million Euros Project in Inflammation Research

19.01.2017 | Awards Funding

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>