Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Track MD Water, Sand Bacteria Sources

21.08.2009
A new study by the Maryland Department of the Environment (MDE) and Salisbury University finds that pets and wildlife are significant sources of bacteria in the watersheds of eight Anne Arundel County waterways, MDE announced.

Another MDE-SU study recently released suggests that bacteria are present in sediment and sand and may contribute to elevated bacteria levels in water.

The studies were conducted to determine the sources of bacteria in surface waters. Researchers found that waste from dogs and from such wildlife as fox and deer accounted for about two-thirds of the bacteria in the watersheds of both Furnace Creek and Marley Creeks, two Glen Burnie-area waterways where bacteria standards are not being met.

The findings suggest that failing to clean up after pets can have a significant effect on water quality in the watersheds. While further investigation is needed to determine ways to reduce human sources of bacteria in these waters, the study provides a beginning for local communities and governments to examine and prioritize ways to minimize bacteria in their waters. The study results, along with the findings from the MDE-SU study of bacteria in beach sand, will be used in connection with on-going efforts to reduce bacteria loads in Maryland waters.

MDE’s science services director, Rich Eskin, said: “We are constantly striving to improve our data so we can target our work to reduce pollution throughout Maryland. These studies can be used as models for determining the sources of bacteria in other waterways throughout the state.”

For several years MDE has partnered with Salisbury University to develop Bacteria Source Tracking (BST) for all bacteria-impaired waters in Maryland. This latest round of BST work was completed in July and submitted to MDE by researchers Drs. Mark Frana and Elichia Venso of Salisbury University.

Bacteria Source Tracking was conducted in watersheds in Anne Arundel County as part of the Total Maximum Daily Load (TMDL) determination for bacteria. A TMDL establishes the maximum amount of an impairing substance or stressor that a body of water can assimilate and still meet water quality standards and allocates that load among pollution contributors.

Researchers studied eight Anne Arundel County watersheds: Furnace Creek, Magothy River, Rhode River, Marley Creek, Severn River, South River, West River, and along Anne Arundel’s Chesapeake Bay coast. They collected samples in areas of the watersheds where bacteria standards are not being met.

Overall, the major contributor to bacteria in the eight watersheds was wildlife, followed by pets (primarily in the form of dog waste), humans, and lastly, livestock. A summary of the study findings for all eight watersheds is attached. The studies measured “indicator” bacteria, which are common in all warm blooded animals, including humans, and are generally not harmful. The presence of indicator bacteria in water, sediment, and sand does not necessarily mean that bacterial pathogens are present. Because pathogenic bacteria are infrequent and difficult to monitor, MDE and county health departments monitor indicator bacteria and use the results to determine whether waters meet water quality standards, whether shellfish harvesting waters should be closed, and whether swimming advisories are necessary.

The other MDE-Salisbury University study suggests that indicator bacteria are present in sediment and sand and may contribute to elevated indicator bacteria levels in water. Researchers in the Great Lakes, on the west coast, and in Florida have shown that indicator bacteria can thrive in beach sand in the absence of pollution sources, raising the question of whether sand rather than runoff or other discharges could be the source of elevated bacteria levels in the water. If so, how does this relate to the risk to public health?

MDE partnered with Frana and Venso to investigate whether the same thing happens in our region and to begin to try and understand how this may relate to health risk. To account for the variety of conditions found in our region, the study looked at four sites: an ocean beach in Sussex County, DE; a coastal bay at Assateague Island National Sea Shore in Worcester County; Granary Creek, a small tributary of the Wye River in Talbot County; and the Chesapeake Bay at Sandy Point State Park in Anne Arundel County. For one year, water, sediment, and sand samples were collected monthly at each site to test for the presence of indicator bacteria. All samples were screened for human pathogens.

None of the sites were impacted directly by pollution sources and, like all of Maryland’s beaches, all of the sites were potentially impacted by non-point sources. Researchers found no bacterial pathogens normally associated with pollution sources in the water samples. They found only one potential human pathogen, which is naturally occurring and known to cause mild intestinal illness, in one sediment sample.

The absence of bacterial pathogens associated with pollution sources, in water samples whose indicator bacteria levels are increased by their presence in sediment and sand suggests that the current water quality standard is conservative and that the combination of shoreline surveys to address known pollution sources and routine monitoring are effective for adequately protecting public health.

For more information call 410-543-6030 or visit the SU Web site at www.salisbury.edu.

Richard Culver | Newswise Science News
Further information:
http://www.salisbury.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>