Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Track MD Water, Sand Bacteria Sources

21.08.2009
A new study by the Maryland Department of the Environment (MDE) and Salisbury University finds that pets and wildlife are significant sources of bacteria in the watersheds of eight Anne Arundel County waterways, MDE announced.

Another MDE-SU study recently released suggests that bacteria are present in sediment and sand and may contribute to elevated bacteria levels in water.

The studies were conducted to determine the sources of bacteria in surface waters. Researchers found that waste from dogs and from such wildlife as fox and deer accounted for about two-thirds of the bacteria in the watersheds of both Furnace Creek and Marley Creeks, two Glen Burnie-area waterways where bacteria standards are not being met.

The findings suggest that failing to clean up after pets can have a significant effect on water quality in the watersheds. While further investigation is needed to determine ways to reduce human sources of bacteria in these waters, the study provides a beginning for local communities and governments to examine and prioritize ways to minimize bacteria in their waters. The study results, along with the findings from the MDE-SU study of bacteria in beach sand, will be used in connection with on-going efforts to reduce bacteria loads in Maryland waters.

MDE’s science services director, Rich Eskin, said: “We are constantly striving to improve our data so we can target our work to reduce pollution throughout Maryland. These studies can be used as models for determining the sources of bacteria in other waterways throughout the state.”

For several years MDE has partnered with Salisbury University to develop Bacteria Source Tracking (BST) for all bacteria-impaired waters in Maryland. This latest round of BST work was completed in July and submitted to MDE by researchers Drs. Mark Frana and Elichia Venso of Salisbury University.

Bacteria Source Tracking was conducted in watersheds in Anne Arundel County as part of the Total Maximum Daily Load (TMDL) determination for bacteria. A TMDL establishes the maximum amount of an impairing substance or stressor that a body of water can assimilate and still meet water quality standards and allocates that load among pollution contributors.

Researchers studied eight Anne Arundel County watersheds: Furnace Creek, Magothy River, Rhode River, Marley Creek, Severn River, South River, West River, and along Anne Arundel’s Chesapeake Bay coast. They collected samples in areas of the watersheds where bacteria standards are not being met.

Overall, the major contributor to bacteria in the eight watersheds was wildlife, followed by pets (primarily in the form of dog waste), humans, and lastly, livestock. A summary of the study findings for all eight watersheds is attached. The studies measured “indicator” bacteria, which are common in all warm blooded animals, including humans, and are generally not harmful. The presence of indicator bacteria in water, sediment, and sand does not necessarily mean that bacterial pathogens are present. Because pathogenic bacteria are infrequent and difficult to monitor, MDE and county health departments monitor indicator bacteria and use the results to determine whether waters meet water quality standards, whether shellfish harvesting waters should be closed, and whether swimming advisories are necessary.

The other MDE-Salisbury University study suggests that indicator bacteria are present in sediment and sand and may contribute to elevated indicator bacteria levels in water. Researchers in the Great Lakes, on the west coast, and in Florida have shown that indicator bacteria can thrive in beach sand in the absence of pollution sources, raising the question of whether sand rather than runoff or other discharges could be the source of elevated bacteria levels in the water. If so, how does this relate to the risk to public health?

MDE partnered with Frana and Venso to investigate whether the same thing happens in our region and to begin to try and understand how this may relate to health risk. To account for the variety of conditions found in our region, the study looked at four sites: an ocean beach in Sussex County, DE; a coastal bay at Assateague Island National Sea Shore in Worcester County; Granary Creek, a small tributary of the Wye River in Talbot County; and the Chesapeake Bay at Sandy Point State Park in Anne Arundel County. For one year, water, sediment, and sand samples were collected monthly at each site to test for the presence of indicator bacteria. All samples were screened for human pathogens.

None of the sites were impacted directly by pollution sources and, like all of Maryland’s beaches, all of the sites were potentially impacted by non-point sources. Researchers found no bacterial pathogens normally associated with pollution sources in the water samples. They found only one potential human pathogen, which is naturally occurring and known to cause mild intestinal illness, in one sediment sample.

The absence of bacterial pathogens associated with pollution sources, in water samples whose indicator bacteria levels are increased by their presence in sediment and sand suggests that the current water quality standard is conservative and that the combination of shoreline surveys to address known pollution sources and routine monitoring are effective for adequately protecting public health.

For more information call 410-543-6030 or visit the SU Web site at www.salisbury.edu.

Richard Culver | Newswise Science News
Further information:
http://www.salisbury.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>