Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Teach Medical Search Engines to Learn Slang

Medical websites like WebMD provide consumers with more access than ever before to comprehensive health and medical information, but the sites’ utility becomes limited if users use unclear or unorthodox language to describe conditions in a site search.

However, a group of Georgia Tech researchers have created a machine-learning model that enables the sites to “learn” dialect and other medical vernacular, thereby improving their performance for users who use such language themselves.

Called “diaTM” (short for “dialect topic modeling”), the system learns by comparing multiple medical documents written in different levels of technical language. By comparing enough of these documents, diaTM eventually learns which medical conditions, symptoms and procedures are associated with certain dialectal words or phrases, thus shrinking the “language gap” between consumers with health questions and the medical databases they turn to for answers.

“The language gap problem seems to be the most acute in the medical domain,” said Hongyuan Zha, professor in the School of Computational Science & Engineering and a paper co-author. “Providing a solution for this domain will have a high impact on maintaining and improving people’s health.”

To educate diaTM in various modes of medical language, Crain and his fellow researchers pulled publicly available documents not only from WebMD but also Yahoo! Answers, PubMed Central, the Centers for Disease Control & Prevention website, and other sources. After processing enough documents, he said, diaTM can learn that the word “gunk,” for example, is often a vernacular term for “discharge,” and it can process user searches that incorporate the word “gunk” appropriately.

In this initial study using small-scale experiments, the researchers found that diaTM can achieve a 25 percent improvement in nDCG (“normalized discounted cumulative gain”), a scientific term that refers to the relevance of information retrieval in a web search. Zha, whose research focuses on Internet search engines and their related algorithms, said a 5 percent improvement in nDCG is “very significant.”

“DiaTM figures out enough language relationships that over time it does quite well,” said Steven Crain, Ph.D. student in computer science and lead author of the paper that describes diaTM. “Another benefit is we’re not doing word-for-word equivalencies, so ‘gunk’ doesn’t necessarily have to be connected to ‘discharge,’ as long as it’s recognized that ‘gunk’ is related to infections.”

Also, diaTM is not limited to medical search; it is a machine-learning technique that would work equally well in any topic-related search. In addition to approaching websites about incorporating diaTM into their search engines, Crain said one next stop is to develop the model so that it can learn dialects by looking at patterns that do not make sense from a topical perspective. For example, using a similar algorithm he was able to automatically discover dialects including text-speak dialect (e.g. “b4” as a subsititue for “before”), but the dialects were mixed in with topically-related groups of words.

“We’re trying to get to where you can isolate just the dialects,” Crain said.

“This feature will help common users of medical websites,” Zha said. “It will help enable consumers with a relatively low level of health literacy to access the critical medical information they need.”

DiaTM is described in the paper, “Dialect Topic Modeling for Improved Consumer Medical Search,” to be presented by Crain at the American Medical Informatics Association Annual Symposium, Nov. 17 in Washington, D.C. Crain’s coauthors include Hongyuan Zha, professor in the School of Computational Science & Engineering; Shuang-Hong Yang, a Ph.D. student in Computational Science and Engineering; and Yu Jiao, research scientist at Oak Ridge National Laboratory (ORNL). The research was conducted with partial funding from ORNL, Microsoft and Hewlett-Packard.

About the Georgia Tech College of Computing
The Georgia Tech College of Computing is a national leader in the creation of real-world computing breakthroughs that drive social and scientific progress. With its graduate program ranked 10th nationally by U.S. News and World Report, the College’s unconventional approach to education is defining the new face of computing by expanding the horizons of traditional computer science students through interdisciplinary collaboration and a focus on human centered solutions. For more information about the Georgia Tech College of Computing, its academic divisions and research centers, please visit

Michael Terrazas | Newswise Science News
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>