Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers To Send Bacteria Into Orbit Aboard Space Shuttle Atlantis

12.05.2010
New Study Will Investigate the Effects of Microgravity on the Formation of Biofilms; Could Lead to Safer and Healthier Space Travel

A team of researchers from Rensselaer Polytechnic Institute will send an army of microorganisms into space this week, to investigate new ways of preventing the formation and spread of biofilms, or clusters of bacteria, that could pose a threat to the health of astronauts.

The Micro-2 experiment, led by Cynthia Collins, assistant professor in the Department of Chemical and Biological Engineering at Rensselaer, is scheduled to launch into orbit on May 14 aboard Space Shuttle Atlantis.

The microorganisms will spend a week in space before returning to Earth aboard the shuttle. Within just a few hours after the shuttle’s return, Collins will be able to examine the bacteria and resulting biofilms to see how their growth and development were impacted by microgravity. The samples also will be returned to Rensselaer, to be examined using the core facilities of the Institute’s Center for Biotechnology and Interdisciplinary Studies.

“We know that gravity plays a key role in the development of biological systems, but we don’t know exactly how a lack of gravity affects the development of bacteria and biofilms,” Collins said. “This means while certain bacteria may be harmless on Earth, they could pose a health threat to astronauts on the International Space Station or, one day, long space flights. Our goal is to better understand how microgravity affects the relationship between humans and bacteria, so we can develop new ways of reduce the threat of biofilms to spacecraft and their crew.”

Partnering with Collins on the Micro-2 project are nanobiotechnology expert Jonathan Dordick, the Howard P. Isermann Professor of Chemical and Biological Engineering at Rensselaer and director of the university’s Center for Biotechnology and Interdisciplinary Studies, and thin films expert Joel Plawsky, professor in the Department of Chemical and Biological Engineering. NASA is funding the experiment.

Biofilms are complex, three-dimensional microbial communities. Bacteria commonly found in nature are often in the form of biofilms. Most biofilms, including those found in the human body, are harmless. Some biofilms, however, have shown to be associated with disease. Additionally, biofilms in locations such as hospitals – or confined locations like space shuttles – have exhibited resistance to antibiotics. This could pose a problem for astronauts, who have been shown to have an increased susceptibility to infection while in microgravity.

Collins and her team will send up eight devices, called group activation packs (GAPs) and each containing 128 vials of bacteria, aboard the shuttle. While in orbit, astronauts will begin the experiment by manipulating the sealed vials and introducing the bacteria to different membranes. At the same time, Collins will perform the same actions with identical GAPs still on Earth at the Kennedy Space Center in Florida. After the shuttle returns, her team will compare the resulting biofilms to see how the behavior of bacteria and development of biofilms in microgravity differed from the control group. The experiment uses BioServe Space Technologies flight-certified hardware.

The Micro-2 research team will also test if newly developed, nanotechnology-based antimicrobial surfaces – developed by Dordick at Rensselaer – can help slow the growth of biofilms on Earth and in microgravity. If successful, these new antimicrobial surfaces could one day be used in hospitals and spacecraft to help reduce the impact of biofilms on human health.

For more information on the project, visit: http://spacebiosciences.arc.nasa.gov/micro2.html

For additional information on Collins’ research, visit: www.rpi.edu/~collic3/Cynthia_Collins

For additional information on Dordick’s research, visit:
http://enzymes.che.rpi.edu/Research%20Group.html
For additional information Plawsky’s research, visit:
http://www.rpi.edu/dept/chem-eng/WWW/faculty/plawsky/jlp.res.html
Collins’ experiment is the third Rensselaer research project to be launched into space over the past year. In August 2009, an experimental heat transfer system designed by Plawsky and Rensselaer Professor Peter Wayner was installed in the International Space Station (ISS), where it will remain for three years. In November 2009, wear-resistant, low-friction nanomaterials created by Professor Linda Schadler were blasted into orbit aboard Space Shuttle Atlantis, attached to the outer hull of the ISS, and exposed to rigors of space.
For more information on these projects, visit: http://news.rpi.edu/update.do?artcenterkey=2618
http://blogger.rpi.edu/approach/2010/03/30/guest-blogger-joel-plawsky/
http://news.rpi.edu/update.do?artcenterkey=2658
Contact
Michael Mullaney
Rensselaer Polytechnic Institute
Troy, NY
518-276-6161 (office)
518-698-6336 (mobile)
mullam@rpi.edu
Follow us on Twitter at http://www.twitter.com/RPInews.
For more story ideas, visit the Rensselaer research and discovery blog at: http://approach.rpi.edu

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>