Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reveal potential treatment for sickle cell disease

02.11.2011
Laboratory study at University of Michigan Health System shows increasing TR2/TR4 expression can lead to higher fetal hemoglobin levels in sickle cell patients

A University of Michigan Health System laboratory study reveals a key trigger for producing normal red blood cells that could lead to a new treatment for those with sickle cell disease.

The study, conducted in mice, appears in this week's early edition of the Proceedings of the National Academy of Sciences, and holds promise for preventing the painful episodes and organ damage that are common complications of sickle cell disease.

According to the U-M study, increasing the expression of the proteins, TR2 and TR4, more than doubled the level of fetal hemoglobin produced in sickle cell mice and reduced organ damage.

It's the first time specific proteins have been targeted to prevent a disease, authors say.

"The vast majority of sickle cell disease patients are diagnosed early in childhood when adult hemoglobin normally replaces fetal hemoglobin, but the severity of the disease can differ markedly, correlating most strongly with the level of fetal hemoglobin present in red cells," says pediatrician and lead study author Andrew D. Campbell, M.D., director of the Pediatric Comprehensive Sickle Cell Program at the U-M Cancer Center.

Sickle cell is an inherited blood disorder impacting hundreds of thousands of patients worldwide that causes normal red blood cells to change shape to a crescent moon.

The result is life-long debilitating pain episodes, chronic organ damage and significantly shortened life span. But a small number of sickle cell patients are born with a high enough fetal hemoglobin level to moderate these complications.

The study team, that included pediatric hematologists, cell and developmental biologists and pathology experts at U-M and the University of Tsukuba, Japan, demonstrated a potential method for boosting the fetal hemoglobin levels by modulating TR2/TR4 expression.

"While the average fetal hemoglobin was 7.6 percent in the sickle cell mice, the TR2/TR4 treated sickle cell mice had an average fetal hemoglobin of 18.6 percent," says senior study author James Douglas Engel, Ph.D. , professor and chair of the U-M's Cell and Development Biology Department.

He adds that anemia and red blood cell turnover all improved within the TR2/TR4 mice. Additional studies, including clinical trials, would be requiredto determine if the technique could help humans.

"Currently hydroxyurea is the only FDA approved drug known to increase the levels of fetal hemoglobin within sickle cell disease patients and a substantial number of patients do respond to it," says Campbell, the pediatric hematology oncology specialist. "But the long term consequences for hydroxyurea are unknown, especially in children."

Authors: Andrew D. Campbell, Shuaiying Cui, Lihong Shi, Rebekah Urbonya, Andrea Mathias, Kori Bradley, Kwaku O. Bonsua, Rhonda R. Douglas, Brittne Halford, Lindsay Schmidt, David Harro, Donald Giacherio, Keiji Tanimoto, Osamu Tanabe, and James Douglas Engel.

Reference: "Forced TR2/TR4 Expression in Sickle Cell Disease Mice Confers Enhanced Fetal Hemoglobin Synthesis and Alleviated Disease Phenotypes," Proceedings of the National Academy of Sciences, Oct. 31, 2011.

Funding: Authors work was supported by the American Heart Association, Cooley's Anemia Foundation, Robert Wood Johnson Foundation and the National Institutes of Health's National Heart Lung and Blood Institute.

Resources
Department of Cell and Developmental Biology
http://www.med.umich.edu/cdb/
U-M Sickle Cell Program
http://www.med.umich.edu/sicklecell/
University of Michigan Comprehensive Cancer Center
http://www.cancer.med.umich.edu/

Shantell M. Kirkendoll | EurekAlert!
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>