Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers report new understanding of role of telomeres in tumor growth

Study published in The American Journal of Pathology

The first report of the presence of alternative lengthening of telomeres (ALT) in cancers arising from the bladder, cervix, endometrium, esophagus, gallbladder, liver, and lung was published today in The American Journal of Pathology. The presence of ALT in carcinomas can be used as a diagnostic marker and has implications for the development of anti-cancer drug therapies.

Telomeres are nucleoprotein complexes located at the ends of chromosomes. During normal cell division, these telomeres become shorter with each division, potentially resulting in cell death. In some cancers, however, this shortening is counteracted by the ALT mechanism, thus allowing the unlimited growth of the cancer cells.

"The present study offers a springboard to guide future investigations in larger cohorts that specifically focus on the tumor types exhibiting ALT to more precisely determine the prevalence and potential prognostic value of this phenotype," commented lead investigator Christopher Heaphy, PhD, a postdoctoral research fellow at The Johns Hopkins School of Medicine.

"These results may have therapeutic consequences, given that cancers using the ALT pathway are predicted to be resistant to anti-telomerase therapies, some of which have entered phase I/II clinical trials. Further understanding of the molecular mechanisms of ALT will be paramount in designing novel anti-cancer therapeutics targeting cancers utilizing the ALT pathway," observed corresponding author Alan K. Meeker, PhD, Assistant Professor of Pathology at Johns Hopkins.

Meeker and co-investigators have assessed the prevalence of the ALT mechanism in a wide range of human cancer subtypes. Analyzing 6,110 tumor samples from 94 different cancer subtypes, 541 benign neoplasms, and 264 normal tissue samples, researchers found that the overall prevalence of the ALT phenotype was 3.73%. It was not observed in benign neoplasms or normal tissues.

Additionally, this is the first report of ALT in medulloblastomas, oligodendrogliomas, meningiomas, schwannomas, and pediatric glioblastoma multiformes.

The authors also note that they were able to identify many tumor types that apparently may not use the ALT pathway for telomere maintenance. In particular, they assessed hundreds of cases of adenocarcinomas arising from the prostate, colon, pancreas, or small intestine and did not observe a single ALT-positive tumor.

Previous studies have shown associations between ALT status and prognosis in some tumor types. The authors suggest that further studies are warranted to assess the potential prognostic significance and unique biology of ALT-positive tumors.

The article is "Prevalence of the Alternative Lengthening of Telomeres Telomere Maintenance Mechanism in Human Cancer Subtypes" by Christopher M. Heaphy, Andrea P. Subhawong, Seung-Mo Hong, Michael G. Goggins, Elizabeth A. Montgomery, Edward Gabrielson, George J. Netto, Jonathan I. Epstein, Tamara L. Lotan, William H. Westra, Ie-Ming Shih, Christine A. Iacobuzio-Donahue, Anirban Maitra, Qing K. Li, Charles G. Eberhart, Janis M. Taube, Dinesh Rakheja, Robert J. Kurman, T.C. Wu, Richard B. Roden, Pedram Argani, Angelo M. De Marzo, Luigi Terracciano, Michael Torbenson, and Alan K. Meeker. (doi: 10.1016/j.ajpath.2011.06.018). It will appear in The American Journal of Pathology, Volume 179, Issue 4 (October 2011) published by Elsevier.

David Sampson | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>