Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers push the boundary with high carbon emission scenarios

US and Swiss researchers have, for the first time, modelled a climate system with extremely high carbon emissions in an attempt to test the boundaries of the current computer simulation programs that inform us.

Published today, Tuesday 5 July, in IOP Publishing's journal Environmental Research Letters, the study has revealed the potentially devastating effects that high carbon emissions could have on our climate.

Little attention has previously been paid to the upper bound range of future emissions which, as the researchers state, is imperative when testing the outcomes of climate change simulations.

The A1FI scenario, considered in the most recent report from the Intergovernmental Panel on Climate Change (IPCC), represents the upper bound of predicted carbon emissions.

The researchers, from the National Centre for Atmospheric Research, Colorado, and the Institute for Atmospheric and Climate Science, Zurich, created two hypothetical high carbon emission scenarios and compared their effects to the existing emission scenarios.

The first scenario created, CurrentMix, assumed that global energy behaviour would remain constant but that the global population would rise to 11 billion by 2100. The increase in carbon emissions envisaged in the A1FI scenario would be doubled by the end of the century.

The second scenario, AllCoal, was designed as a thought experiment to exceed all likely emissions for the remainder of the century.

This scenario assumed that the global population would increase to 15 billion by 2100 and that demand for fuel sources would increase, with more demand placed on coal – the fuel with the highest amount of carbon per unit of energy. This would result in four times the increase in carbon emissions envisaged in the A1FI scenario.

According to the researchers' computer simulations, the major differences between each scenario would begin to materialise towards the end of the 21st century.

By 2100, the AllCoal and CurrentMix scenarios would produce a warming of over 12 Kelvin (K) in the Arctic regions, with global sea levels rising by 33 cm and 27 cm respectively due to the thermal expansion of the oceans.

The A1FI scenario showed a 21 cm increase in sea levels; however the figures did not account for melting ice-sheets, which could increase sea levels by large amounts. The AllCoal scenario projected a complete loss of summer Arctic sea ice by 2070.

Each of the scenarios showed the typical pattern of increased rainfall towards the poles and drying subtropics. For example, the AllCoal scenario showed a 30-80 per cent precipitation reduction in Southern Europe, Central America, and Southern Australia as well as increases of 50-200 per cent in the Arctic and Antarctic regions, Northern Canada and Siberia.

The increase in most regions' maximum temperatures went up by a factor of two in the AllCoal scenario; however some regions showed a considerably larger increase. In particular, the maximum summer temperatures in Northern Europe increased by 6-7 K by 2100.

Lead author Dr Ben Sanderson said, "Our study considered a future in which fossil fuel availability is completely unrestricted and climate change is unmitigated, resulting in significant additional warming above the entire range of scenarios considered in the Fourth Assessment Report of the IPCC."

"This study showed us that the model behaves on a global scale largely as we would expect."

From Tuesday 5 July, this journal paper can be found at

Notes to Editors


1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Press Assistant, Michael Bishop:
Tel: 0117 930 1032
The response of the climate system to very high greenhouse gas emission scenarios

2. The published version of the paper "The response of the climate system to very high greenhouse gas emission scenarios" (Benjamin M Sanderson et al 2011 Environ. Res. Lett. 6 034005) will be freely available online from Tuesday 5 July. It will be available at

Environmental Research Letters

3. Environmental Research Letters is an open access journal that covers all of environmental science, providing a coherent and integrated approach including research articles, perspectives and editorials.

IOP Publishing

4. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP.Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to

The Institute of Physics

5. The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policymakers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications. Go to

Michael Bishop | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>