Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers push the boundary with high carbon emission scenarios

05.07.2011
US and Swiss researchers have, for the first time, modelled a climate system with extremely high carbon emissions in an attempt to test the boundaries of the current computer simulation programs that inform us.

Published today, Tuesday 5 July, in IOP Publishing's journal Environmental Research Letters, the study has revealed the potentially devastating effects that high carbon emissions could have on our climate.

Little attention has previously been paid to the upper bound range of future emissions which, as the researchers state, is imperative when testing the outcomes of climate change simulations.

The A1FI scenario, considered in the most recent report from the Intergovernmental Panel on Climate Change (IPCC), represents the upper bound of predicted carbon emissions.

The researchers, from the National Centre for Atmospheric Research, Colorado, and the Institute for Atmospheric and Climate Science, Zurich, created two hypothetical high carbon emission scenarios and compared their effects to the existing emission scenarios.

The first scenario created, CurrentMix, assumed that global energy behaviour would remain constant but that the global population would rise to 11 billion by 2100. The increase in carbon emissions envisaged in the A1FI scenario would be doubled by the end of the century.

The second scenario, AllCoal, was designed as a thought experiment to exceed all likely emissions for the remainder of the century.

This scenario assumed that the global population would increase to 15 billion by 2100 and that demand for fuel sources would increase, with more demand placed on coal – the fuel with the highest amount of carbon per unit of energy. This would result in four times the increase in carbon emissions envisaged in the A1FI scenario.

According to the researchers' computer simulations, the major differences between each scenario would begin to materialise towards the end of the 21st century.

By 2100, the AllCoal and CurrentMix scenarios would produce a warming of over 12 Kelvin (K) in the Arctic regions, with global sea levels rising by 33 cm and 27 cm respectively due to the thermal expansion of the oceans.

The A1FI scenario showed a 21 cm increase in sea levels; however the figures did not account for melting ice-sheets, which could increase sea levels by large amounts. The AllCoal scenario projected a complete loss of summer Arctic sea ice by 2070.

Each of the scenarios showed the typical pattern of increased rainfall towards the poles and drying subtropics. For example, the AllCoal scenario showed a 30-80 per cent precipitation reduction in Southern Europe, Central America, and Southern Australia as well as increases of 50-200 per cent in the Arctic and Antarctic regions, Northern Canada and Siberia.

The increase in most regions' maximum temperatures went up by a factor of two in the AllCoal scenario; however some regions showed a considerably larger increase. In particular, the maximum summer temperatures in Northern Europe increased by 6-7 K by 2100.

Lead author Dr Ben Sanderson said, "Our study considered a future in which fossil fuel availability is completely unrestricted and climate change is unmitigated, resulting in significant additional warming above the entire range of scenarios considered in the Fourth Assessment Report of the IPCC."

"This study showed us that the model behaves on a global scale largely as we would expect."

From Tuesday 5 July, this journal paper can be found at http://iopscience.iop.org/1748-9326/6/3/034005

Notes to Editors

Contact

1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Press Assistant, Michael Bishop:
Tel: 0117 930 1032
E-mail: Michael.bishop@iop.org
The response of the climate system to very high greenhouse gas emission scenarios

2. The published version of the paper "The response of the climate system to very high greenhouse gas emission scenarios" (Benjamin M Sanderson et al 2011 Environ. Res. Lett. 6 034005) will be freely available online from Tuesday 5 July. It will be available at http://iopscience.iop.org/1748-9326/6/3/034005

Environmental Research Letters

3. Environmental Research Letters is an open access journal that covers all of environmental science, providing a coherent and integrated approach including research articles, perspectives and editorials.

IOP Publishing

4. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP.Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to http://publishing.iop.org/.

The Institute of Physics

5. The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policymakers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications. Go to www.iop.org

Michael Bishop | EurekAlert!
Further information:
http://www.iop.org

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>