Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers learn why robots get stuck in the sand -- and how to keep them going

10.02.2009
Today's advanced mobile robots explore complex terrains across the globe and even on Mars, but have difficulty traversing sand and other granular media like dirt, rubble or slippery piles of leaves.

A new study published February 10 in the journal Proceedings of the National Academy of Sciences takes what may be the first detailed look at the problem of robot locomotion on granular surfaces. Among the study's recommendations: robots attempting to move across sandy terrain should move their legs more slowly, especially if the sand is loosely packed.

"We have discovered that when a robot rotates its legs too fast or the sand is packed loosely enough, the robot transitions from a rapid walking motion to a much slower swimming motion," said Daniel Goldman, an assistant professor in the School of Physics at the Georgia Institute of Technology. This project was funded by the Burroughs Wellcome Fund and the U.S. Army Research Laboratory.

The physics of movement on granular media has been largely unexplored systematically, so Goldman and his team set out to systematically investigate the performance of a small six-legged device called SandBot. The robot was designed by Haldun Komsuoglu and Daniel Koditschek at the University of Pennsylvania.

"This is new territory because researchers have not examined the interaction between an animal's foot and sand like they have a whale or duck's flipper and water," said Goldman. "Sand is a uniquely challenging terrain because it can shift quite easily from solid to fluid to solid and requires different locomotion strategies."

To conduct controlled experiments, Georgia Tech physics graduate student Chen Li built a trackway for SandBot to run along. The trackway consists of an eight-foot-long poppy seed-filled container with tiny holes in the bottom through which air can be blown. The air pulses elevate the granules and cause them to settle into a loosely packed solid state, allowing the researchers to closely control the density of the material.

"We used poppy seeds as the granular material because they were large enough not to get into the SandBot motors but light enough to be manipulated with our air blowers," explained Goldman. "We have done experiments with small glass beads, which more closely approximate desert sand, and found no qualitative change in the results."

In the desert, typical volume fractions for granular media range from 55 to 64 percent. For the study's initial experiments, the researchers packed the poppy seeds to a volume fraction of 63 percent, placed SandBot onto the surface and set its c-shaped legs to rotate five times per second. The little robot, which could bounce quickly across hard ground, became completely stuck in the granular material after just a few steps.

The researchers discovered that the problem was the rotational motion of the robot's limbs. The SandBot moves its limbs in an alternating tripod gait and during a rotation, each limb moves fast while it is in the air and slow while it is in the ground. The researchers found that the robot could walk across the sand quickly – at a speed of one body length per second – if the rotation frequency was fixed and three parameters were adjusted: the durations of the slow and fast phases and the angle at which the limb changed from slow to fast.

"A systematic study of the motion then revealed that changes in volume fraction of less than one percent resulted in either rapid motion or slower swimming," added Goldman. "We saw similar sensitivity when we changed the limb rotation frequency."

To study this phenomenon further, Goldman and Paul Umbanhowar of Northwestern University developed a simple kinematic model of penetration and slip of a curved limb on granular media. The model results showed that the relationship of the speed to the volume fraction and frequency of leg rotation was largely controlled by the degree to which the robot limbs penetrated into the sand with each step.

The higher the limb frequency and the looser the granular material, the deeper the robot sank into the granular material. Thus the length of the step the robot could take was shortened and when the step size became too short, the robot took its next step into ground disturbed by the previous step. This triggered a catastrophic loss of speed and a shift from walking to continuous paddling through the poppy seeds.

Goldman believes that this study's experiments and model describing the basic behavior of motion on granular media will help biologists understand how animals appear to move effortlessly across a diversity of complex substrates.

He also plans to use the information to help roboticists design devices with the appropriate feet and limb motion to move well in complex terrain – including sand. Future robots may have the ability to sense the type of material they are walking across, allowing them to adjust their limb motion accordingly. Such smart robots would advance the exploration of other planets, as well as search-and-rescue missions in disaster settings.

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>