Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify an immune cell linked to inflammation and scarring in Graves' eye disease

11.01.2010
Study explains why Graves' disease also targets the eye's orbit

A cell type that causes significant scarring in lung disease appears to have a similar effect in Graves' disease, University of Michigan Health System researchers have found. The cells, called fibrocytes, are present at a higher than normal frequency in patients with Graves' disease, according to a new study, the first to associate fibrocytes with this autoimmune disease.

The discovery is a major step forward in explaining how and why the orbit of the eye is subject to scarring and inflammation in Graves' disease.

The findings may also lead to new treatment strategies to target scarring or fibrosis, say authors Raymond Douglas, M.D., Ph.D., and Terry Smith, M.D., specialists in Graves' disease at the University of Michigan Kellogg Eye Center. The study appears in the January issue of the Journal of Clinical Endocrinology & Metabolism.

Graves' disease is an autoimmune disorder which results in an overactive thyroid. Up to half of those affected by the disease will develop inflammation or fibrosis around their eyes, creating the bulging appearance associated with Graves' eye disease, also called thyroid-associated ophthalmopathy. Excessive scarring can cause such manifestations as double vision or even loss of vision.

"Today we have medications to reduce inflammation, but these drugs typically do not treat the fibrotic effects of thyroid eye disease," says Douglas, oculoplastics surgeon. "Our study is the first to implicate fibrocytes in the disease process, a finding that should open up new possibilities for treatment."

Fibrocytes are immune cells derived from bone marrow that circulate through the bloodstream. They can infiltrate tissue, like the lungs, kidney, and liver, generating excess connective tissue and areas of fibrosis, for example, following pulmonary or kidney injury.

To determine whether fibrocytes play a similar role in Graves' disease, these investigators and their colleagues examined tissue samples from 70 patients with the disease and compared them to 25 healthy subjects. The samples were gathered while Douglas and Smith were on the faculty of the University of California at Los Angeles.

They found that fibrocytes were present at substantially higher frequencies—as much as five times greater—in patients with Graves' disease. These levels were observed in both the bloodstream and in the orbital tissues of patients who had developed thyroid eye disease.

In earlier studies, Douglas and Smith identified the antigens that trigger the overactive immune response in Graves' disease. Now they report that fibrocytes express the same antigens: thyroid-stimulating hormone receptor (TSHR) and insulin-like growth factor-1 receptor (IGF-1R). In addition, the Kellogg researchers say, when these receptors are activated, they produce a large quantity of cytokines which could stimulate immune cells to the orbit, causing inflammation in thyroid eye disease.

"We now have a much clearer picture of the disease process, including the pathway by which fibrocytes reach the orbit," says Douglas. "Drugs currently under development for other fibrotic diseases are designed to disrupt this pathway and prevent fibrocytes from reaching their target." According to Douglas, "These therapies may be just as effective for our patients with thyroid eye disease."

As follow-up to the study, the Kellogg researchers plan to more fully identify the role of fibrocytes in the disease process and test whether several new agents, such as rituximab, can reduce these cells as they circulate through the bloodstream. The authors also recently demonstrated that rituximab was highly effective in treating patients with severe Graves' disease.

Reference: Increased Generation of Fibrocytes in Thyroid-Associated Ophthalmopathy, Journal of Clinical Endocrinology & Metabolism, doi:10.1210/jc.2009-1614

Funding support includes grants from the National Institutes of Health, Research to Prevent Blindness, and the Bell Charitable Foundation.

Learn more:

Kellogg Eye Center: Graves' Eye Disease http://www.kellogg.umich.edu/patientcare/conditions/graves.disease.html

Related news: Researchers find new way to attack inflammation in Graves' eye disease (11/6/2009) http://www2.med.umich.edu/prmc/media/newsroom/details.cfm?ID=1367

Betsy Nisbet | EurekAlert!
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>