Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify a mechanism linking bariatric surgery to health benefits

23.04.2014

Bariatric surgery has positive effects not only on weight loss but also on diabetes and heart disease. Researchers at the Sahlgrenska Academy and University of Cincinnati have shown that the health benefits are not caused by a reduction in the stomach size but by increased levels of bile acids in the blood. These findings, reported in Nature, indicate that bile acids could be a new target for treating obesity and diabetes.

Previous research from the Sahlgrenska Academy has demonstrated that obesity surgery is the only effective treatment for obesity and obesity-related diabetes.

However, the mechanisms that cause the positive effects have been unclear.

Positive effects caused by bile acids
Professor Fredrik Bäckhed, in collaboration with Randy Seeley and coworkers from the University of Cincinnati in the US, has shown that the positive effects of bariatric surgery are likely caused by the surgery-induced increase in bile acids. The study, which is published online in the leading science journal Nature, focuses on a specific receptor called FXR, which is involved in bile acid signaling.

"Our study shows that signaling through FXR is essential for the beneficial effects of the surgery to be achieved. This is a major breakthrough in understanding how bariatric surgery affects metabolism and in the development of new treatment strategies", says Fredrik Bäckhed.

Important future complement
The prevalence of obesity is increasing worldwide and it is not realistic to operate on all obese subjects. Furthermore, bariatric surgery is associated with a risk of complications. Treatment strategies based on the FXR receptor could therefore be an important future therapeutic approach.

Improves glucose metabolism
In this study, mice with or without the FXR gene underwent an operation termed vertical sleeve gastrectomy (VSG) in which approximately 80 percent of the stomach was removed. The surgical procedure is the same as that performed in humans.

The researchers observed that the operation promoted weight loss and improved glucose metabolism in mice with FXR while the operation had no effect in mice that lacked FXR.

Alters intestinal bacterial flora
This study also showed that VSG resulted in changes in the gut microbiota, a potentially important finding given that Fredrik Bäckhed’s research group has previously demonstrated that the intestinal bacterial flora is altered in obesity and diabetes.

"These additional findings suggest that an altered gut flora together with signaling through FXR may contribute to improved metabolism. This means that future treatments based on the intestinal flora could help in the treatment of diabetes."

The article FXR is a molecular target for the effects of vertical sleeve gastrectomy was published online in Nature on 26 March.

Link to the journal: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13135.html

Contact:
Fredrik Bäckhed, Professor at the Sahlgrenska Academy and Director of the Wallenberg Laboratory, University of Gothenburg
+4631-342 7833
+4670-2182355
fredrik.backhed@wlab.gu.se
http://www.wlab.gu.se/backhed

Weitere Informationen:

http://sahlgrenska.gu.se/english/news_and_events/news/News_Detail/researchers-id...

Krister Svahn | idw - Informationsdienst Wissenschaft

Further reports about: Researchers Treatment mechanism metabolism obesity receptor strategies therapeutic

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>