Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify a mechanism linking bariatric surgery to health benefits

23.04.2014

Bariatric surgery has positive effects not only on weight loss but also on diabetes and heart disease. Researchers at the Sahlgrenska Academy and University of Cincinnati have shown that the health benefits are not caused by a reduction in the stomach size but by increased levels of bile acids in the blood. These findings, reported in Nature, indicate that bile acids could be a new target for treating obesity and diabetes.

Previous research from the Sahlgrenska Academy has demonstrated that obesity surgery is the only effective treatment for obesity and obesity-related diabetes.

However, the mechanisms that cause the positive effects have been unclear.

Positive effects caused by bile acids
Professor Fredrik Bäckhed, in collaboration with Randy Seeley and coworkers from the University of Cincinnati in the US, has shown that the positive effects of bariatric surgery are likely caused by the surgery-induced increase in bile acids. The study, which is published online in the leading science journal Nature, focuses on a specific receptor called FXR, which is involved in bile acid signaling.

"Our study shows that signaling through FXR is essential for the beneficial effects of the surgery to be achieved. This is a major breakthrough in understanding how bariatric surgery affects metabolism and in the development of new treatment strategies", says Fredrik Bäckhed.

Important future complement
The prevalence of obesity is increasing worldwide and it is not realistic to operate on all obese subjects. Furthermore, bariatric surgery is associated with a risk of complications. Treatment strategies based on the FXR receptor could therefore be an important future therapeutic approach.

Improves glucose metabolism
In this study, mice with or without the FXR gene underwent an operation termed vertical sleeve gastrectomy (VSG) in which approximately 80 percent of the stomach was removed. The surgical procedure is the same as that performed in humans.

The researchers observed that the operation promoted weight loss and improved glucose metabolism in mice with FXR while the operation had no effect in mice that lacked FXR.

Alters intestinal bacterial flora
This study also showed that VSG resulted in changes in the gut microbiota, a potentially important finding given that Fredrik Bäckhed’s research group has previously demonstrated that the intestinal bacterial flora is altered in obesity and diabetes.

"These additional findings suggest that an altered gut flora together with signaling through FXR may contribute to improved metabolism. This means that future treatments based on the intestinal flora could help in the treatment of diabetes."

The article FXR is a molecular target for the effects of vertical sleeve gastrectomy was published online in Nature on 26 March.

Link to the journal: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13135.html

Contact:
Fredrik Bäckhed, Professor at the Sahlgrenska Academy and Director of the Wallenberg Laboratory, University of Gothenburg
+4631-342 7833
+4670-2182355
fredrik.backhed@wlab.gu.se
http://www.wlab.gu.se/backhed

Weitere Informationen:

http://sahlgrenska.gu.se/english/news_and_events/news/News_Detail/researchers-id...

Krister Svahn | idw - Informationsdienst Wissenschaft

Further reports about: Researchers Treatment mechanism metabolism obesity receptor strategies therapeutic

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>