Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify 1 of the necessary processes in the formation of long-term memory

09.09.2009
Researchers discover that the addition of the phosphor molecule to a the NMDA receptor in the brain is a necessary step in memory formation

A new study that was carried out at the University of Haifa has identified another component in the chain of actions that take place in the neurons in the process of forming memories. This discovery joins a line of findings from previous studies that together provide a better understanding of the most complex processes in nature – the process of memory formation and storage in the human brain. The new study has been published in the prestigious Journal of Neuroscience.

The human brain is continuously inundated with sensory information on the world: new sounds, tastes, sights and smells and the formation of memory to these inputs is ultimately vital for animal survival. Very little of this information becomes short-term memory. And only a small part of the information that becomes short-term memory ultimately becomes long-term and stabilized memory. Earlier studies that were carried out at the Molecular Mechanisms of Learning and Memory laboratory headed by Prof. Kobi Rosenblum at the University of Haifa found that the an elevation in the expression of the protein PSD-95 is necessary for the formation of long-term memory. The present study aimed to find out whether another molecular process – the addition of a phosphor molecule to the NMDA receptor protein (phosphorylation) – is necessary too.

Earlier studies have proven that changes in the NMDA receptor can adjust the neuronal network in the brain, and that during a learning process this receptor undergoes increased phosphorylation. Until now, it had not been proved that the increase in phosphorylation of the NMDA is necessary for the process and that the process would not occur without it.

In order to prove this, the scientists - headed by Prof. Rosenblum, Head of the Department of Neurobiology and Ethology at the University of Haifa, and Dr. Liza Barki-Harrington, along with Dr. Alina Elkobi and research student Tali Tzabary - chose to focus on the formation of new taste memory in rats as a model for sensory memory. According to the researchers, examining taste-learning processes has advantages in this type of research, since it enables tracking when the process begins, what its specific location is in the brain and the molecular processes that occur during the process.

The first stage of the study aimed to verify the findings of the previous studies and showed that the new taste learning does indeed involve a process of increased phosphorylation in the NMDA receptors in the area specific to learning taste in the brain. In order to do so, mature rats were trained to drink water at set times and after a few days some were given saccharine-sweetened water. The saccharine has no caloric value and therefore has no metabolic impact on the body and cannot affect the body's processes. As expected, the rats that received the newly sweet-tasting water and that began a process of learning, showed an increase in phosphorylation in comparison to those rats that continued drinking regular water.

The second stage of the study was aimed at showing that the phosphorylation process is essential. For this, the scientists injected a new group of rats with a substance that inhibits phosphorylation of the NMDA in the area of taste learning in the brain when drinking the saccharine. Tests that were carried out afterwards showed that these rats were not able to learn the new taste, which proves that the phosphorylation process is necessary for learning taste. The researchers found that obstruction of the process brings about a change in the location of the receptor in relation to the NMDA and thereby is likely to be responsible for inhibiting the formation of long-term memory.

"Our goal is to identify piece after piece of the complex puzzle that is the formation of long-term memory. Once we know how to describe the chain of actions that take place in the brain, we may be able to know where and how to interfere," Dr. Barki-Harrington said.

"The glutamate neural synapses – via the receptors of the NMDA – and dophamin, play a central role in a number of neural pathologies, including processes of addiction and of schizophrenia. There is good reason to assume that one afflicted with schizophrenia has a sub- or over-functioning of this system, and its loss of balance is one of the causes of the illness. A better understanding of this balance - or loss of balance - in the normal processes will enable future discovery of new objectives for developing medications, which we hope will improve patients' lives significantly," Prof. Rosenblum stated.

Amir Gilat, Ph.D.
Communication and Media Relations
University of Haifa
Tel: +972-4-8240092/4
Cell: +972-52-6178200
press@univ.haifa.ac.il

Rachel Feldman | EurekAlert!
Further information:
http://www.haifa.ac.il

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>