Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find That Tree-Killing Hurricanes Could Contribute to Global Warming

04.05.2009
A first-of-its kind, long-term study of hurricane impact on U.S. trees shows that hurricane damage can diminish a forest’s ability to absorb carbon dioxide, a major contributor to global warming, from the atmosphere.

Tulane University researchers from the Department of Ecology and Evolutionary Biology examined the impact of tropical cyclones on U.S. forests from 1851–2000 and found that changes in hurricane frequency might contribute to global warming. The results will be published in an upcoming issue of the Proceedings of the National Academy of Sciences.

Trees absorb carbon dioxide as they grow, and release it when they die -- either from old age or from trauma, such as hurricanes. The annual amount of carbon dioxide a forest removes from the atmosphere is determined by the ratio of tree growth to tree mortality each year.

When trees are destroyed en masse by hurricanes, not only will there be fewer trees in the forest to absorb greenhouse gases, but forests could eventually become emitters of carbon dioxide, warming the climate. And other studies, notes Tulane ecologist Jeff Chambers, indicate that hurricanes will intensify with a warming climate.

“If landfalling hurricanes become more intense or more frequent in the future, tree mortality and damage exceeding 50 million tons of tree biomass per year would result in a net carbon loss from U.S. forest ecosystems,” says Chambers.

The study, which was led by Tulane postdoctoral research associate Hongcheng Zeng, establishes an important baseline to evaluate changes in the frequency and intensity of future landfalling hurricanes.

Using field measurements, satellite image analyses, and empirical models to evaluate forest and carbon cycle impacts, the researchers established that an average of 97 million trees have been affected each year for the past 150 years over the entire United States, resulting in a 53-million ton annual biomass loss and an average carbon release of 25 million tons. Forest impacts were primarily located in Gulf Coast areas, particularly southern Texas and Louisiana and south Florida, while significant impacts also occurred in eastern North Carolina.

Chambers compares the data from this study to a 2007 study that showed that a single storm – Hurricane Katrina -- destroyed nearly 320 million trees with a total biomass loss equivalent to 50–140 percent of the net annual U.S. carbon sink in forest trees.

“The bottom line,” says Chambers, “is that any sustained increase in hurricane tree biomass loss above 50 million tons would potentially undermine our efforts to reduce human fossil fuel carbon emissions.”

Study contributors include Tulane lab researchers Robinson Negrón-Juárez and David Baker; George Hurtt of the Institute for the Study of Earth, Oceans, and Space at the University of New Hampshire; and Mark Powell at the Hurricane Research Division, National Oceanic and Atmospheric Administration. For more information contact Tulane’s Office of Public Relations.

Kathryn Hobgood | Newswise Science News
Further information:
http://tulane.edu/news/

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>