Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find That Tree-Killing Hurricanes Could Contribute to Global Warming

04.05.2009
A first-of-its kind, long-term study of hurricane impact on U.S. trees shows that hurricane damage can diminish a forest’s ability to absorb carbon dioxide, a major contributor to global warming, from the atmosphere.

Tulane University researchers from the Department of Ecology and Evolutionary Biology examined the impact of tropical cyclones on U.S. forests from 1851–2000 and found that changes in hurricane frequency might contribute to global warming. The results will be published in an upcoming issue of the Proceedings of the National Academy of Sciences.

Trees absorb carbon dioxide as they grow, and release it when they die -- either from old age or from trauma, such as hurricanes. The annual amount of carbon dioxide a forest removes from the atmosphere is determined by the ratio of tree growth to tree mortality each year.

When trees are destroyed en masse by hurricanes, not only will there be fewer trees in the forest to absorb greenhouse gases, but forests could eventually become emitters of carbon dioxide, warming the climate. And other studies, notes Tulane ecologist Jeff Chambers, indicate that hurricanes will intensify with a warming climate.

“If landfalling hurricanes become more intense or more frequent in the future, tree mortality and damage exceeding 50 million tons of tree biomass per year would result in a net carbon loss from U.S. forest ecosystems,” says Chambers.

The study, which was led by Tulane postdoctoral research associate Hongcheng Zeng, establishes an important baseline to evaluate changes in the frequency and intensity of future landfalling hurricanes.

Using field measurements, satellite image analyses, and empirical models to evaluate forest and carbon cycle impacts, the researchers established that an average of 97 million trees have been affected each year for the past 150 years over the entire United States, resulting in a 53-million ton annual biomass loss and an average carbon release of 25 million tons. Forest impacts were primarily located in Gulf Coast areas, particularly southern Texas and Louisiana and south Florida, while significant impacts also occurred in eastern North Carolina.

Chambers compares the data from this study to a 2007 study that showed that a single storm – Hurricane Katrina -- destroyed nearly 320 million trees with a total biomass loss equivalent to 50–140 percent of the net annual U.S. carbon sink in forest trees.

“The bottom line,” says Chambers, “is that any sustained increase in hurricane tree biomass loss above 50 million tons would potentially undermine our efforts to reduce human fossil fuel carbon emissions.”

Study contributors include Tulane lab researchers Robinson Negrón-Juárez and David Baker; George Hurtt of the Institute for the Study of Earth, Oceans, and Space at the University of New Hampshire; and Mark Powell at the Hurricane Research Division, National Oceanic and Atmospheric Administration. For more information contact Tulane’s Office of Public Relations.

Kathryn Hobgood | Newswise Science News
Further information:
http://tulane.edu/news/

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>