Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find out why some stress is good for you

17.04.2013
Overworked and stressed out? Look on the bright side. Some stress is good for you.
“You always think about stress as a really bad thing, but it’s not,” said Daniela Kaufer, associate professor of integrative biology at the University of California, Berkeley. “Some amounts of stress are good to push you just to the level of optimal alertness, behavioral and cognitive performance.”

New research by Kaufer and UC Berkeley post-doctoral fellow Elizabeth Kirby has uncovered exactly how acute stress – short-lived, not chronic – primes the brain for improved performance.

In studies on rats, they found that significant, but brief stressful events caused stem cells in their brains to proliferate into new nerve cells that, when mature two weeks later, improved the rats’ mental performance.

“I think intermittent stressful events are probably what keeps the brain more alert, and you perform better when you are alert,” she said.

Kaufer, Kirby and their colleagues in UC Berkeley’s Helen Wills Neuroscience Institute describe their results in a paper published April 16 in the new open access online journal eLife.

The UC Berkeley researchers’ findings, “in general, reinforce the notion that stress hormones help an animal adapt – after all, remembering the place where something stressful happened is beneficial to deal with future situations in the same place,” said Bruce McEwen, head of the Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology at The Rockefeller University, who was not involved in the study.

Kaufer is especially interested in how both acute and chronic stress affect memory, and since the brain’s hippocampus is critical to memory, she and her colleagues focused on the effects of stress on neural stem cells in the hippocampus of the adult rat brain. Neural stem cells are a sort of generic or progenitor brain cell that, depending on chemical triggers, can mature into neurons, astrocytes or other cells in the brain. The dentate gyrus of the hippocampus is one of only two areas in the brain that generate new brain cells in adults, and is highly sensitive to glucocorticoid stress hormones, Kaufer said.

Much research has demonstrated that chronic stress elevates levels of glucocorticoid stress hormones, which suppresses the production of new neurons in the hippocampus, impairing memory. This is in addition to the effect that chronically elevated levels of stress hormones have on the entire body, such as increasing the risk of chronic obesity, heart disease and depression.

Less is known about the effects of acute stress, Kaufer said, and studies have been conflicting.

To clear up the confusion, Kirby subjected rats to what, to them, is acute but short-lived stress – immobilization in their cages for a few hours. This led to stress hormone (corticosterone) levels as high as those from chronic stress, though for only a few hours. The stress doubled the proliferation of new brain cells in the hippocampus, specifically in the dorsal dentate gyrus.

Kirby discovered that the stressed rats performed better on a memory test two weeks after the stressful event, but not two days after the event. Using special cell labeling techniques, the researchers established that the new nerve cells triggered by the acute stress were the same ones involved in learning new tasks two weeks later.

“In terms of survival, the nerve cell proliferation doesn’t help you immediately after the stress, because it takes time for the cells to become mature, functioning neurons,” Kaufer said. “But in the natural environment, where acute stress happens on a regular basis, it will keep the animal more alert, more attuned to the environment and to what actually is a threat or not a threat.”

They also found that nerve cell proliferation after acute stress was triggered by the release of a protein, fibroblast growth factor 2 (FGF2), by astrocytes — brain cells formerly thought of as support cells, but that now appear to play a more critical role in regulating neurons.

“The FGF2 involvement is interesting, because FGF2 deficiency is associated with depressive-like behaviors in animals and is linked to depression in humans,” McEwen said.

Kaufer noted that exposure to acute, intense stress can sometimes be harmful, leading, for example, to post-traumatic stress disorder. Further research could help to identify the factors that determine whether a response to stress is good or bad.

“I think the ultimate message is an optimistic one,” she concluded. “Stress can be something that makes you better, but it is a question of how much, how long and how you interpret or perceive it.”

The eLife paper was coauthored by UC Berkeley colleagues Sandra E Muroy, Wayne G. Sun and David Covarrubias of the Department of Molecular and Cell Biology; Megan J. Leong of the Helen Wills Neuroscience Institute; and Laurel A. Barchas of the Department of Integrative Biology. Kirby is now a post-doctoral fellow at Stanford University.

Kaufer’s research was funded by a BRAINS (Biobehavioral Research Awards for Innovative New Scientists) award from the National Institute of Mental Health of the National Institutes of Health (R01 MH087495) and the National Alliance for Research on Schizophrenia and Depression. Kirby was supported by fellowships from the California Institute for Regenerative Medicine and the U.S. Department of Defense.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu
http://newscenter.berkeley.edu/2013/04/16/researchers-find-out-why-some-stress-is-good-for-you/

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>