Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find out why some stress is good for you

17.04.2013
Overworked and stressed out? Look on the bright side. Some stress is good for you.
“You always think about stress as a really bad thing, but it’s not,” said Daniela Kaufer, associate professor of integrative biology at the University of California, Berkeley. “Some amounts of stress are good to push you just to the level of optimal alertness, behavioral and cognitive performance.”

New research by Kaufer and UC Berkeley post-doctoral fellow Elizabeth Kirby has uncovered exactly how acute stress – short-lived, not chronic – primes the brain for improved performance.

In studies on rats, they found that significant, but brief stressful events caused stem cells in their brains to proliferate into new nerve cells that, when mature two weeks later, improved the rats’ mental performance.

“I think intermittent stressful events are probably what keeps the brain more alert, and you perform better when you are alert,” she said.

Kaufer, Kirby and their colleagues in UC Berkeley’s Helen Wills Neuroscience Institute describe their results in a paper published April 16 in the new open access online journal eLife.

The UC Berkeley researchers’ findings, “in general, reinforce the notion that stress hormones help an animal adapt – after all, remembering the place where something stressful happened is beneficial to deal with future situations in the same place,” said Bruce McEwen, head of the Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology at The Rockefeller University, who was not involved in the study.

Kaufer is especially interested in how both acute and chronic stress affect memory, and since the brain’s hippocampus is critical to memory, she and her colleagues focused on the effects of stress on neural stem cells in the hippocampus of the adult rat brain. Neural stem cells are a sort of generic or progenitor brain cell that, depending on chemical triggers, can mature into neurons, astrocytes or other cells in the brain. The dentate gyrus of the hippocampus is one of only two areas in the brain that generate new brain cells in adults, and is highly sensitive to glucocorticoid stress hormones, Kaufer said.

Much research has demonstrated that chronic stress elevates levels of glucocorticoid stress hormones, which suppresses the production of new neurons in the hippocampus, impairing memory. This is in addition to the effect that chronically elevated levels of stress hormones have on the entire body, such as increasing the risk of chronic obesity, heart disease and depression.

Less is known about the effects of acute stress, Kaufer said, and studies have been conflicting.

To clear up the confusion, Kirby subjected rats to what, to them, is acute but short-lived stress – immobilization in their cages for a few hours. This led to stress hormone (corticosterone) levels as high as those from chronic stress, though for only a few hours. The stress doubled the proliferation of new brain cells in the hippocampus, specifically in the dorsal dentate gyrus.

Kirby discovered that the stressed rats performed better on a memory test two weeks after the stressful event, but not two days after the event. Using special cell labeling techniques, the researchers established that the new nerve cells triggered by the acute stress were the same ones involved in learning new tasks two weeks later.

“In terms of survival, the nerve cell proliferation doesn’t help you immediately after the stress, because it takes time for the cells to become mature, functioning neurons,” Kaufer said. “But in the natural environment, where acute stress happens on a regular basis, it will keep the animal more alert, more attuned to the environment and to what actually is a threat or not a threat.”

They also found that nerve cell proliferation after acute stress was triggered by the release of a protein, fibroblast growth factor 2 (FGF2), by astrocytes — brain cells formerly thought of as support cells, but that now appear to play a more critical role in regulating neurons.

“The FGF2 involvement is interesting, because FGF2 deficiency is associated with depressive-like behaviors in animals and is linked to depression in humans,” McEwen said.

Kaufer noted that exposure to acute, intense stress can sometimes be harmful, leading, for example, to post-traumatic stress disorder. Further research could help to identify the factors that determine whether a response to stress is good or bad.

“I think the ultimate message is an optimistic one,” she concluded. “Stress can be something that makes you better, but it is a question of how much, how long and how you interpret or perceive it.”

The eLife paper was coauthored by UC Berkeley colleagues Sandra E Muroy, Wayne G. Sun and David Covarrubias of the Department of Molecular and Cell Biology; Megan J. Leong of the Helen Wills Neuroscience Institute; and Laurel A. Barchas of the Department of Integrative Biology. Kirby is now a post-doctoral fellow at Stanford University.

Kaufer’s research was funded by a BRAINS (Biobehavioral Research Awards for Innovative New Scientists) award from the National Institute of Mental Health of the National Institutes of Health (R01 MH087495) and the National Alliance for Research on Schizophrenia and Depression. Kirby was supported by fellowships from the California Institute for Regenerative Medicine and the U.S. Department of Defense.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu
http://newscenter.berkeley.edu/2013/04/16/researchers-find-out-why-some-stress-is-good-for-you/

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>