Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find electrical current stemming from plants

14.04.2010
In an electrifying first, Stanford scientists have plugged in to algae cells and harnessed a tiny electric current. They found it at the very source of energy production – photosynthesis, a plant's method of converting sunlight to chemical energy. It may be a first step toward generating "high efficiency" bioelectricity that doesn't give off carbon dioxide as a byproduct, the researchers say.

"We believe we are the first to extract electrons out of living plant cells," said WonHyoung Ryu, the lead author of the paper published in the March issue of Nano Letters. Ryu conducted the experiments while he was a research associate for mechanical engineering professor Fritz Prinz.

The Stanford research team developed a unique, ultra-sharp nanoelectrode made of gold, specially designed for probing inside cells. They gently pushed it through the algal cell membranes, which sealed around it, and the cell stayed alive. From the photosynthesizing cells, the electrode collected electrons that had been energized by light and the researchers generated a tiny electric current.

"We're still in the scientific stages of the research," said Ryu. "We were dealing with single cells to prove we can harvest the electrons."

Plants use photosynthesis to convert light energy to chemical energy, which is stored in the bonds of sugars they use for food. The process takes place in chloroplasts, the cellular powerhouses that make sugars and give leaves and algae their green color. In the chloroplasts, water is split into oxygen, protons and electrons. Sunlight penetrates the chloroplast and zaps the electrons to a high energy level, and a protein promptly grabs them. The electrons are passed down a series of proteins, which successively capture more and more of the electrons' energy to synthesize sugars until all the electron's energy is spent.

In this experiment, the researchers intercepted the electrons just after they had been excited by light and were at their highest energy levels. They placed the gold electrodes in the chloroplasts of algae cells, and siphoned off the electrons to generate the tiny electrical current.

The result, the researchers say, is electricity production that doesn't release carbon into the atmosphere. The only byproducts of photosynthesis are protons and oxygen.

"This is potentially one of the cleanest energy sources for energy generation," Ryu said. "But the question is, is it economically feasible?"

Ryu said they were able to draw from each cell just one picoampere, an amount of electricity so tiny that they would need a trillion cells photosynthesizing for one hour just to equal the amount of energy stored in a AA battery. In addition, the cells die after an hour. Ryu said tiny leaks in the membrane around the electrode could be killing the cells, or they may be dying because they're losing out on energy they would normally use for their own life processes. One of the next steps would be to tweak the design of the electrode to extend the life of the cell, Ryu said.

Harvesting electrons this way would be more efficient than burning biofuels, as most plants that are burned for fuel ultimately store only about 3 to 6 percent of available solar energy, Ryu said. His process bypasses the need for combustion, which only harnesses a portion of a plant's stored energy. Electron harvesting in this study was about 20 percent efficient. Ryu said it could theoretically reach 100 percent efficiency one day. (Photovoltaic solar cells are currently about 20-40-percent efficient.)

Possible next steps would be to use a plant with larger chloroplasts for a larger collecting area, and a bigger electrode that could capture more electrons. With a longer-lived plant and better collecting ability, they could scale up the process, Ryu said. Ryu is now a professor at Yonsei University in Seoul, South Korea.

Other authors of the paper are Prinz, the senior author,; Seoung-Jai Bai, Tibor Fabian, Rainer J. Fasching, Joong Sun Park, and Zubin Huang, all researchers in the Rapid Protoyping Laboratory at Stanford University; and Jeffrey Moseley and Arthur Grossman, both researchers in the Department of Plant Biology at the Carnegie Institution and Department of Biological Sciences.

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

Solar wind impacts on giant 'space hurricanes' may affect satellite safety

19.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>