Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find a way to improve memory by suppressing a molecule that links aging to Alzheimer’s disease

19.11.2014

In a new study conducted by the Sagol Department of Neurobiology at the University of Haifa and published recently in the Journal of Neuroscience, researchers report that they've found a way to improve memory by manipulating a specific molecule that is known to function poorly in old age and is closely linked to Alzheimer’s disease.

The researchers even succeeded, for the first time, in manipulating the molecule’s operations without creating any cognitive impairment.

“We know that in Alzheimer’s, this protein, known as PERK, doesn't function properly. Our success in manipulating its expression without causing any harm to the proper functioning of the brain paves the way for improving memory and perhaps even slowing the pathological development of diseases like Alzheimer’s,” said Prof. Kobi Rosenblum, who heads the lab in which the research was done.

Previous studies at the University of Haifa and other labs throughout the world had shown that the brain’s process of formulating memory is linked to the synthesis of proteins; high rates of protein production will lead to a strong memory that is retained over the long term, while a slow rate of protein production leads to weak memories that are less likely to be impressed on a person’s long-term memory and thus forgotten.

In the current study, the researchers, Dr. Hadile Ounallah-Saad and Dr. Vijendra Sharma, both of whom work in Prof. Rosenblum’s lab at the Sagol Department of Neurobiology, sought to examine the activity of a protein called elF2 alpha, a protein that’s known as the “spigot” or regulator that determines the pace of protein synthesis in the brain during memory formation.

From earlier studies the researchers knew that there are three main molecules that act on the protein and either make it work, or stop it from working. During the first stage they sought to determine the relative importance and the task of each one of the molecules that control the activity of efF2 alpha and as a result, the ability to create memories. After doing tests at the tissue and cell levels, the researchers discovered that the main molecule controlling the efF2 alpha’s activity was the PERK molecule.

“The fact that we identified the PERK as the primary controller had particular significance,” said Dr. Ounallah-Saad. “Firstly, of course, we had identified the dominant component. Secondly, from previous studies we already knew that in generative diseases like Alzheimer’s, PERK performs deficiently. Third, PERK acts on various cells, including neurons, as a monitor and controller of metabolic stress. In other words, we found a molecule that has a major impact on the process of creating and formulating memory, and which we know performs deficiently in people with Alzheimer’s disease.”

During the second stage of the study, the researchers sought to examine whether they could manipulate this molecule in rats in a way that would improve memory. To do this they used two accepted methods, one using a drug called a small-molecule inhibitor and the other making a genetic change to the brain cells using a type of virus also used in gene therapy.

After paralyzing PERK’s activity or reducing its expression through gene therapy (which was done with the help of Dr. Efrat Edry, of the University’s Center for Gene Manipulation in the Brain), the researchers measured a 30% increase in the memory of either positive or negative experiences. The rats also demonstrated improved long-term memory and enhanced behavioral plasticity, becoming better able to “forget” a bad experience. In other words, on a behavioral level it was clear that manipulating PERK by either of two methods improved memory and cognitive abilities.

When the researchers examined the tissues on a cell and molecular level, the discovered that the steps they’d taken had indeed stopped the expression of PERK, which allowed the “spigot” – the elF2 alpha protein – to perform better and increase the pace of protein synthesis. Even more, there was a clear correlation between memory function and the degree to which PERK was suppressed; the more efficiently PERK was suppressed, the better the memory function.

But the researchers faced another problem. Previous studies that had manipulated PERK in general in genetically engineered animals led to fixated behavior. “The brain operates in a most sophisticated fashion, with each action closely linked to many other actions,” said Dr. Ounallah-Saad. “In our study we succeeded in maintaining such control of the PERK that it didn't influence the retrieval of existing memories, or do anything other cognitive damage.”

“With this study we proved that we are capable of strengthening the process of protein synthesis in the brain and of creating stronger memories that last a long time,” said Prof. Rosenblum. “The moment we did this by manipulating a molecule that we know performs deficiently in people with Alzheimer’s and is linked to the aging process, we have paved the way for the possible development of drugs that can slow the progress of incurable diseases like degenerative brain conditions, Alzheimer’s chief among them.”

For further details:
Division of Communications and Media Relations | University of Haifa

Ilan +972-4-8240204

      +972-528-666404

Itai +972-4-8288722

      +972-502-42780

Omri +972-4-8240092

        +972-547-200585

Media Relations | University of Haifa
Further information:
http://www.huji.ac.il

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>