Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Examine How Bacteria Become Resistant to Antibiotics

06.10.2010
A study by two Florida State University biochemists makes an important contribution to science’s understanding of a serious problem causing concern worldwide: the growing resistance of some harmful bacteria to the drugs that were intended to kill them.

Investigating exactly how bacteria learn to fend off antibiotics prescribed to treat infections is the subject of new research by Assistant Professor Brian G. Miller of FSU’s Department of Chemistry and Biochemistry and one of his graduate research assistants, Kevin K. Desai.

They have found that bacteria are remarkably resilient to toxic substances, such as antibiotics, because bacteria have the innate ability to produce a large variety of proteins. Those proteins then are able to do things such as pump toxins out or alter toxins so that they can no longer kill the bacteria.

“Most of us take antibiotics to eliminate infections without considering what would happen if they failed to work,” said Kevin Desai, a graduate research assistant in Florida State’s Department of Chemistry and Biochemistry. “While treating bacterial infections has typically been as easy as swallowing a pill, researchers are apprehensive about the increasing frequency of infections that are resistant to antibiotics, and are searching for ways to regain the upper hand.”

In their study, Miller and Desai learned that about 2 percent of all the proteins produced by the model bacterium E. coli can be linked to enabling resistance to a single toxin called bromoacetate. Their research also has implications in elucidating the function of specific proteins and understanding how bacteria in the environment can survive in the presence of toxic manmade chemicals such as pesticides.

A paper describing Desai and Miller’s work was published this week in the prestigious journal Proceedings of the National Academy of Sciences. That paper is titled “Recruitment of Genes and Enzymes Conferring Resistance to the Nonnatural Toxin Bromoacetate.”

“The recent rise of antibiotic resistance demonstrates that bacteria are capable of rapidly evolving evasive strategies,” they wrote. “It also has exposed our lack of knowledge about the evolutionary processes leading to resistance.”

Understanding the mechanisms by which bacteria evade environmental threats has direct relevance for understanding and combating the rise of antibiotic resistance, Desai and Miller added.

The techniques described in the paper will be highly useful for other researchers in the field because it will allow them to predict the resistance to specific antibiotics. Any resistance mechanisms identified could then be inhibited so that the antibiotics will retain their effectiveness.

Their research was funded, in part, by grants from the James and Ester King Biomedical Research Program and from the National Institute of Diabetes and Digestive and Kidney Diseases.

CONTACT: Kevin K. Desai
(850) 645-8683; kkd02d@fsu.edu
or Brian G. Miller
(850) 645-6570; miller@chem.fsu.edu

Kevin K. Desai | Newswise Science News
Further information:
http://www.fsu.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>