Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Promising New Treatment to Help People with Spine Injuries Walk Better

28.11.2013
Scientists may have found a new treatment that can help people with spinal cord injuries walk better. The research is published in the November 27, 2013, online issue of Neurology®, the medical journal of the American Academy of Neurology.
“About 59 percent of all spinal injuries are incomplete, leaving pathways that could allow the spinal cord to change in a way that allows people to walk again. Unfortunately, usually a person affected by this type of spinal injury seldom recovers the ability to walk normally,” said study author Randy D. Trumbower, PT, PhD, with Emory University in Atlanta. “Our research proposes a promising new way for the spinal cord to make the connections needed to walk better.”

The research involved 19 people with spine injuries between levels C2 and T12, no joint shortening, some controlled ankle, knee, and hip movements, and the ability to walk at least one step without human assistance. Research team members were based at Emory University, Georgia Institute of Technology and Shepherd Center in Atlanta, the Rehabilitation Institute of Chicago and the University of Wisconsin, Madison.

The participants were exposed to short periods of breathing low oxygen levels, which is called hypoxia. The participants breathed through a mask for about 40 minutes a day for five days, receiving 90-second periods of low oxygen levels followed by 60 seconds of normal oxygen levels. The participants’ walking speed and endurance was tested before the study started, on the first and fifth days of treatment, and again one and two weeks after the treatment ended.

The participants were divided into two groups. In one, nine people received either the treatment or a sham treatment where they received only normal oxygen levels. Then two weeks later they received the other treatment. In the other group, the participants received the treatment or sham treatment and then were asked to walk as fast as they could for 30 minutes within one hour of the treatment, then received the other treatment two weeks later.

Those who received just the hypoxia treatment increased their walking speed on a test of walking 10 meters, walking an average of 3.8 seconds faster than when they did not receive the treatment.

Those who had the treatment plus walking increased their endurance on a test of how far they could walk in six minutes by an average of 100 meters, which was more than a 250-percent increase compared to those who had the sham treatment plus walking.

All participants improved their ability to walk. More than 30 percent of all participants increased their walking speed by at least a tenth of a meter per second and more than 70 percent increased their endurance by at least 50 meters.

“One question this research brings to light is how a treatment that requires people to take in low levels of oxygen can help movement, let alone in those with compromised lung function and motor abilities,” said Michael G. Fehlings, MD, PhD, with the University of Toronto in Canada, who wrote a corresponding editorial on the study. “A possible answer is that spinal serotonin, a neurotransmitter, sets off a cascade of changes in proteins that help restore connections in the spine.”

Trumbower cautions that chronic or sustained hypoxia in untrained hands may cause serious injury and should not be attempted outside the scope of a supervised medical treatment.

The study was supported by the U.S. Department of Defense Spinal Cord Injury Research Program.

To learn more about spinal cord injury, please visit www.aan.com/patients.

The American Academy of Neurology, an association of more than 26,000 neurologists and neuroscience professionals, is dedicated to promoting the highest quality patient-centered neurologic care. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as Alzheimer’s disease, stroke, migraine, multiple sclerosis, brain injury, Parkinson’s disease and epilepsy.

For more information about the American Academy of Neurology, visit http://www.aan.com

Rachel L. Seroka | American Academy of Neurology
Further information:
http://www.aan.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>