Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover “Achilles’ heel” for lymphoid leukemia

12.02.2013
An international study coordinated at the IRCM finds a possible alternative treatment to significantly reduce the adverse effects of chemotherapy

An international research team coordinated at the IRCM in Montréal found a possible alternative treatment for lymphoid leukemia.

Led by Dr. Tarik Möröy, the IRCM’s President and Scientific Director, the team discovered a molecule that represents the disease’s “Achilles’ heel” and could be targeted to develop a new approach that would reduce the adverse effects of current treatments such as chemotherapy and radiation therapy. The study’s results are being published today in the prestigious scientific journal Cancer Cell.

The researchers’ results have direct implications for the treatment of acute lymphoblastic leukemia (ALL), one of the four most common types of leukemia. ALL is a cancer of the bone marrow and blood that progresses rapidly without treatment. Current treatments consist of chemotherapy and radiation therapy, which are both highly toxic and non-specific, meaning that they damage healthy cells as well as tumour tissues.

“Even when effective, patients can suffer dramatic side effects from these treatments,” says Dr. Möröy, who is also Director of the Hematopoiesis and Cancer research unit at the IRCM and corresponding author of the study. “Therefore, they would directly benefit from an improved therapy that could reduce the necessary dose of radiation or chemotherapy, and thus their side effects, while maintaining the treatments’ efficacy. Therapies that target specific molecules have shown great promise. This is why, for the past 20 years, I have been studying a molecule called Gfi1, which plays an important role in the development of blood cells and cancer.”

When normal cells are transformed into tumour cells, the body responds by activating a tumour suppressor protein that induces cell death. Tumour cells must therefore counteract cell death in order to survive.

“With this study, we found that leukemic cells depend on the Gfi1 molecule for their survival,” explains Dr. Cyrus Khandanpour, co-first author of the study and University Hospital physician at University Duisburg-Essen in Germany. "In fact, this molecule helps the malignant cells avoid death by hindering the activity of the tumour suppressor protein. Our results show that when Gfi1 is removed in mice that suffer from T-cell leukemia, the tumour disappears and the animals survive."

“Following this discovery, we wanted to test whether it could be used as a viable approach to treat leukemia in humans,” adds Dr. Möröy. “We transplanted cells from a patient with T-cell leukemia into a mouse. We then inhibited the Gfi1 molecule using a commercially-available agent, and noticed that it stopped the expansion of human leukemia in the bone marrow, peripheral blood and spleen, without leading to adverse effects.”

"These results are a significant indication that therapies targeting the molecule Gfi1 would work in human patients," says Dr. H. Leighton Grimes, co-corresponding author of the study from the Cincinnati Children’s Hospital Medical Center. “In fact, if our results translate to patients, they could improve the prognosis of people suffering from lymphoid malignancies,” adds Dr. James Phelan, the study’s co-first author and recent PhD graduate in Dr. Grimes’ laboratory.

“Our study suggests that a molecular-based therapy targeting Gfi1 would not only significantly improve response rates, but may also lower effective doses of chemotherapy agents or radiation, thereby reducing harmful side effects,” concludes Dr. Khandanpour, who is also a visiting scientist at the IRCM. “Gfi1 represents an Achilles’ heel for lymphoid leukemia and we are continuing to work so that our approach may soon move to clinical trials.”

About acute lymphoblastic leukemia
Acute lymphoblastic leukemia (ALL) is one of the four most common types of leukemia and affects blood cells and the immune system. The disease develops when immature white blood cells are overproduced in the bone marrow, crowd out normal cells, and eventually spread to other organs. Acute refers to the relatively short time course of the disease, as it can be fatal in as little as a few weeks if untreated.

According to the Leukemia & Lymphoma Society of Canada, ALL is the most common type of cancer in children from one to seven years old, and the most common type of leukemia in children from infancy up to age 19. Four out of five children with ALL are cured of their disease after treatment. The number of adults and their remission lengths have grown significantly over the past 30 years. An estimated 4,800 people in Canada were expected to develop leukemia in 2010.

About the study
The article published in Cancer Cell was a collaborative project between Tarik Möröy’s team in Montréal, Cyrus Khandanpour in Germany, H. Leighton Grimes and James Phelan from Cincinnati in the United States, and Bertie Göttgens from Cambridge in the United Kingdom. Collaborators from Dr. Möröy’s IRCM laboratory include Lothar Vassen, Riyan Chen, Marie-Claude Gaudreau and Joseph Krongold. Research at the IRCM was funded by grants from the Canadian Institutes of Health Research (CIHR), the Canada Research Chair program, the IRCM and the Cole Foundation.

For more information on this discovery, please refer to the article summary published online by Cancer Cell: http://www.cell.com/cancer-cell/abstract/S1535-6108(13)00036-6.

About Tarik Möröy
Tarik Möröy obtained a PhD in biochemistry from the Ludwig-Maximilians University in Munich, Germany. He is the IRCM’s President and Scientific Director, Full IRCM Research Professor and Director of the Hematopoiesis and Cancer research unit. Dr. Möröy is also Full professor-researcher in the Department of Microbiology and Immunology (accreditation in biochemistry) at the Université de Montréal, and Adjunct Professor in the Department of Medicine (Division of Experimental Medicine) and the Department of Biochemistry at McGill University. Dr. Möröy holds the Canada Research Chair in Hematopoiesis and Immune Cell Differentiation. For more information, visit www.ircm.qc.ca/moroy.

About the IRCM
Founded in 1967, the Institut de recherches cliniques de Montréal (www.ircm.qc.ca) is currently comprised of 36 research units in various fields, namely immunity and viral infections, cardiovascular and metabolic diseases, cancer, neurobiology and development, systems biology and medicinal chemistry. It also houses three specialized research clinics, eight core facilities and three research platforms with state-of-the-art equipment. The IRCM employs 425 people and is an independent institution affiliated with the Université de Montréal. The IRCM Clinic is associated to the Centre hospitalier de l’Université de Montréal (CHUM). The IRCM also maintains a long-standing association with McGill University.

About the Canadian Institutes of Health Research (CIHR)
CIHR is the Government of Canada's health research investment agency. CIHR's mission is to create new scientific knowledge and enable its translation into better health, more effective health services and products, and a stronger Canadian health care system. Composed of 13 Institutes, CIHR provides leadership and support to more than 14,100 health researchers and trainees across Canada.

For more information and to schedule an interview with Dr. Möröy, please contact:

Julie Langelier
Communications Officer (IRCM)
julie.langelier@ircm.qc.ca
(514) 987-5555

Lucette Thériault
Communications Director (IRCM)
lucette.theriault@ircm.qc.ca
(514) 987-5535

Julie Langelier | EurekAlert!
Further information:
http://www.ircm.qc.ca

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>