Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover a Type of Supporting Cells Resistant to Notch Signaling

22.01.2009
In a new study in the January 20 issue of Developmental Cell, House Ear Institute (HEI) researchers have shown that by blocking a biochemical pathway called the Notch signaling pathway, most of the supporting cells in the inner ear of juvenile mice are induced to directly change into hair cells.

“Interestingly, the new study has shown that all supporting cells do not behave the same, and so some cells may be more amenable to regenerative therapies than others,” said Neil Segil, Ph.D., a senior author and principal investigator at House Ear Institute.

Specifically, one type of supporting cells, the so-called pillar cells, are resistant to the loss of Notch signaling. So, even when Notch signaling is blocked, pillar cells do not turn into hair cells.

While sensory hair cells in the inner ear (cochlea) of birds and other lower vertebrates have the ability to regenerate after being deafened, the sensory hair cells in the cochlea of humans and other mammals cannot. The causes of this failure of regeneration has long been the holy grail in the world of hearing loss research. Currently, there is no cure for sensorineural hearing loss, whose widespread occurrence is largely the result of damage to the cochlea’s sensory hair cells from injury, aging, certain medications or infection.

In a study reported in Nature in June 2006, House Ear Institute (HEI) researchers discovered that some cells in the mouse inner ear known as supporting cells, like their counterparts in birds and reptiles, are able to turn into hair cells, at least for a short time after birth. This discovery gave new hope to the quest for regenerative therapies for hearing loss. However, the mechanisms underlying the change from supporting cell into hair cell, the basis of regeneration in birds and reptiles, remains unknown.

Pillar cells are a highly specialized supporting cell type that matures to form the tunnel of Corti in the inner ear and are essential for cochlear function. In the organ of Corti, the pillar cells are located between the inner and outer hair cells.

Researchers determined that the resistance to loss of Notch signaling is caused by a gene known as Hey2, which is present in the pillar cells, and is necessary for pillar cells resisting turning into hair cells. Hey2 is a member of a family of genes, and the data suggests that other members of this family are present in different supporting cell types in the early postnatal organ of Corti and help define different subpopulations of supporting cells, with Hey2 defining pillar cells.

Also reported for the first time in this study, the team identified FGF, fibroblast growth factor, as a regulation factor for Hey2 in pillar cells. The researchers hypothesize that FGF released from inner hair cells maintains Hey2 expression and contributes to the establishment of the pillar cell region, which divides inner from outer hair cells, a crucial function in a developing ear.

This newly described function of Hey2 in resisting the loss of Notch signaling is likely to influence the thinking about the role of this important biochemical pathway in many other developing embryonic cell types, such as the segmental development of the spinal column, and the differentiation of the cells of the brain.

Segil along with co-author Andy Groves, Ph.D., associate professor of neuroscience and genetics at Baylor College of Medicine, and lead author Angelika Doetzlhofer, Ph.D., think that the role of Hey2 may help explain some of the evolutionary changes that have occurred in the inner ear of vertebrates, such as the existence of multiple rows of pillar cells in our distant relatives the duck-billed platypus. These same mechanisms may help explain how the separation of the inner and outer hair cells is maintained and possibly how these cell types were able to evolve independently.

About the House Ear Institute

The House Ear Institute (HEI) is a non-profit 501(c)(3) organization dedicated to advancing hearing science through research and education to improve quality of life. HEI scientists investigate the cellular and molecular causes of hearing loss and related auditory disorders as well as neurological processes pertaining to the human auditory system and the brain. Our researchers also explore technology advancements to improve auditory implants, hearing aids, diagnostic techniques and rehabilitation tools. The Institute shares its knowledge with the scientific and medical communities as well as the general public through its education and outreach programs.

Kirsten Holguin | Newswise Science News
Further information:
http://www.hei.org

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>