Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Method for Advancing Development of Antipsychotic Drugs

25.11.2011
Researchers interested in the treatment of schizophrenia and dementia have clarified how antipsychotic drugs that target a complex of two receptors at the surface of cells in the brain work, according to a new study published online Nov. 23 in the journal Cell.

The multidisciplinary team included researchers from the Virginia Commonwealth University School of Medicine, together with the Mount Sinai School of Medicine in New York and the University of Maryland School of Pharmacy in Baltimore. In an earlier, but related study, the Mount Sinai School of Medicine team had shown that two brain receptors, which bind the critical neurotransmitter signals serotonin and glutamate at the outside of the cell, form a complex in the areas of the brain that malfunction in schizophrenic patients.

The team has now developed a metric that may help determine the effectiveness of antipsychotic drugs and advance drug design. The present work fills an important gap in knowledge as previously researchers did not understand how this receptor complex was connected to the phenotype of schizophrenia.

The current study findings show that the connection between the complex of the two receptors and the schizophrenic phenotype is a defect in how the serotonin and glutamate signals get interpreted at the inside of the cell, a process referred to as signaling. Moreover, it shows how antipsychotic drugs used to treat patients work to correct such a defect in the brain.

“Not only have we learned how antipsychotics drugs are effective, but we have also found that the signaling through this receptor complex is critical to how these anti-psychotics work,” said the study’s principal investigator Diomedes E. Logothetis, Ph.D., an internationally recognized leader in the study of ion channels and cell signaling mechanisms and chair of the VCU School of Medicine’s Department of Physiology and Biophysics.

According to Logothetis, the most common cellular targets for drugs used in the clinic and by the pharmaceutical industry are G protein-coupled receptors, such as the ones that were examined in this study. Using cell and animal models, they found that the receptors signal very differently when they are together as a complex than when they are apart.

The metric developed by the team could be used to screen new drugs and determine their level of effectiveness, or be used to assess combination therapies - that is, putting two previously ineffective drugs together and making them more useful for some patients. Ultimately this work may translate to creating better antipsychotic drugs for patients.

“We can use the metric we developed to screen new drugs and determine their level of effectiveness,” Logothetis said. “We can also use the metric to assess what combinations of existing drugs will give us the ideal balance between the signaling through the two receptors of the complex.”

Logothetis said the hope is that by using this approach one day researchers will be able to develop a means by which high-throughput screening of drugs can be performed and they also will be able to develop more effective combinations of drugs that are able to help the third of schizophrenic patients who do not respond to current treatments.

Future studies will focus on further identifying the protein targets of the unique signaling pattern of this receptor complex and their link to schizophrenia.

The study was supported by grants from the National Institutes of Health.

EDITOR’S NOTE: A copy of the study is available for reporters by email request from the journal by contacting elyons@cell.com.

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 31,000 students in 216 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

Sathya Achia Abraham | Newswise Science News
Further information:
http://www.vcu.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>