Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Method for Advancing Development of Antipsychotic Drugs

25.11.2011
Researchers interested in the treatment of schizophrenia and dementia have clarified how antipsychotic drugs that target a complex of two receptors at the surface of cells in the brain work, according to a new study published online Nov. 23 in the journal Cell.

The multidisciplinary team included researchers from the Virginia Commonwealth University School of Medicine, together with the Mount Sinai School of Medicine in New York and the University of Maryland School of Pharmacy in Baltimore. In an earlier, but related study, the Mount Sinai School of Medicine team had shown that two brain receptors, which bind the critical neurotransmitter signals serotonin and glutamate at the outside of the cell, form a complex in the areas of the brain that malfunction in schizophrenic patients.

The team has now developed a metric that may help determine the effectiveness of antipsychotic drugs and advance drug design. The present work fills an important gap in knowledge as previously researchers did not understand how this receptor complex was connected to the phenotype of schizophrenia.

The current study findings show that the connection between the complex of the two receptors and the schizophrenic phenotype is a defect in how the serotonin and glutamate signals get interpreted at the inside of the cell, a process referred to as signaling. Moreover, it shows how antipsychotic drugs used to treat patients work to correct such a defect in the brain.

“Not only have we learned how antipsychotics drugs are effective, but we have also found that the signaling through this receptor complex is critical to how these anti-psychotics work,” said the study’s principal investigator Diomedes E. Logothetis, Ph.D., an internationally recognized leader in the study of ion channels and cell signaling mechanisms and chair of the VCU School of Medicine’s Department of Physiology and Biophysics.

According to Logothetis, the most common cellular targets for drugs used in the clinic and by the pharmaceutical industry are G protein-coupled receptors, such as the ones that were examined in this study. Using cell and animal models, they found that the receptors signal very differently when they are together as a complex than when they are apart.

The metric developed by the team could be used to screen new drugs and determine their level of effectiveness, or be used to assess combination therapies - that is, putting two previously ineffective drugs together and making them more useful for some patients. Ultimately this work may translate to creating better antipsychotic drugs for patients.

“We can use the metric we developed to screen new drugs and determine their level of effectiveness,” Logothetis said. “We can also use the metric to assess what combinations of existing drugs will give us the ideal balance between the signaling through the two receptors of the complex.”

Logothetis said the hope is that by using this approach one day researchers will be able to develop a means by which high-throughput screening of drugs can be performed and they also will be able to develop more effective combinations of drugs that are able to help the third of schizophrenic patients who do not respond to current treatments.

Future studies will focus on further identifying the protein targets of the unique signaling pattern of this receptor complex and their link to schizophrenia.

The study was supported by grants from the National Institutes of Health.

EDITOR’S NOTE: A copy of the study is available for reporters by email request from the journal by contacting elyons@cell.com.

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 31,000 students in 216 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

Sathya Achia Abraham | Newswise Science News
Further information:
http://www.vcu.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>