Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Method for Advancing Development of Antipsychotic Drugs

25.11.2011
Researchers interested in the treatment of schizophrenia and dementia have clarified how antipsychotic drugs that target a complex of two receptors at the surface of cells in the brain work, according to a new study published online Nov. 23 in the journal Cell.

The multidisciplinary team included researchers from the Virginia Commonwealth University School of Medicine, together with the Mount Sinai School of Medicine in New York and the University of Maryland School of Pharmacy in Baltimore. In an earlier, but related study, the Mount Sinai School of Medicine team had shown that two brain receptors, which bind the critical neurotransmitter signals serotonin and glutamate at the outside of the cell, form a complex in the areas of the brain that malfunction in schizophrenic patients.

The team has now developed a metric that may help determine the effectiveness of antipsychotic drugs and advance drug design. The present work fills an important gap in knowledge as previously researchers did not understand how this receptor complex was connected to the phenotype of schizophrenia.

The current study findings show that the connection between the complex of the two receptors and the schizophrenic phenotype is a defect in how the serotonin and glutamate signals get interpreted at the inside of the cell, a process referred to as signaling. Moreover, it shows how antipsychotic drugs used to treat patients work to correct such a defect in the brain.

“Not only have we learned how antipsychotics drugs are effective, but we have also found that the signaling through this receptor complex is critical to how these anti-psychotics work,” said the study’s principal investigator Diomedes E. Logothetis, Ph.D., an internationally recognized leader in the study of ion channels and cell signaling mechanisms and chair of the VCU School of Medicine’s Department of Physiology and Biophysics.

According to Logothetis, the most common cellular targets for drugs used in the clinic and by the pharmaceutical industry are G protein-coupled receptors, such as the ones that were examined in this study. Using cell and animal models, they found that the receptors signal very differently when they are together as a complex than when they are apart.

The metric developed by the team could be used to screen new drugs and determine their level of effectiveness, or be used to assess combination therapies - that is, putting two previously ineffective drugs together and making them more useful for some patients. Ultimately this work may translate to creating better antipsychotic drugs for patients.

“We can use the metric we developed to screen new drugs and determine their level of effectiveness,” Logothetis said. “We can also use the metric to assess what combinations of existing drugs will give us the ideal balance between the signaling through the two receptors of the complex.”

Logothetis said the hope is that by using this approach one day researchers will be able to develop a means by which high-throughput screening of drugs can be performed and they also will be able to develop more effective combinations of drugs that are able to help the third of schizophrenic patients who do not respond to current treatments.

Future studies will focus on further identifying the protein targets of the unique signaling pattern of this receptor complex and their link to schizophrenia.

The study was supported by grants from the National Institutes of Health.

EDITOR’S NOTE: A copy of the study is available for reporters by email request from the journal by contacting elyons@cell.com.

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 31,000 students in 216 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

Sathya Achia Abraham | Newswise Science News
Further information:
http://www.vcu.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>