Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Develop Method for Advancing Development of Antipsychotic Drugs

Researchers interested in the treatment of schizophrenia and dementia have clarified how antipsychotic drugs that target a complex of two receptors at the surface of cells in the brain work, according to a new study published online Nov. 23 in the journal Cell.

The multidisciplinary team included researchers from the Virginia Commonwealth University School of Medicine, together with the Mount Sinai School of Medicine in New York and the University of Maryland School of Pharmacy in Baltimore. In an earlier, but related study, the Mount Sinai School of Medicine team had shown that two brain receptors, which bind the critical neurotransmitter signals serotonin and glutamate at the outside of the cell, form a complex in the areas of the brain that malfunction in schizophrenic patients.

The team has now developed a metric that may help determine the effectiveness of antipsychotic drugs and advance drug design. The present work fills an important gap in knowledge as previously researchers did not understand how this receptor complex was connected to the phenotype of schizophrenia.

The current study findings show that the connection between the complex of the two receptors and the schizophrenic phenotype is a defect in how the serotonin and glutamate signals get interpreted at the inside of the cell, a process referred to as signaling. Moreover, it shows how antipsychotic drugs used to treat patients work to correct such a defect in the brain.

“Not only have we learned how antipsychotics drugs are effective, but we have also found that the signaling through this receptor complex is critical to how these anti-psychotics work,” said the study’s principal investigator Diomedes E. Logothetis, Ph.D., an internationally recognized leader in the study of ion channels and cell signaling mechanisms and chair of the VCU School of Medicine’s Department of Physiology and Biophysics.

According to Logothetis, the most common cellular targets for drugs used in the clinic and by the pharmaceutical industry are G protein-coupled receptors, such as the ones that were examined in this study. Using cell and animal models, they found that the receptors signal very differently when they are together as a complex than when they are apart.

The metric developed by the team could be used to screen new drugs and determine their level of effectiveness, or be used to assess combination therapies - that is, putting two previously ineffective drugs together and making them more useful for some patients. Ultimately this work may translate to creating better antipsychotic drugs for patients.

“We can use the metric we developed to screen new drugs and determine their level of effectiveness,” Logothetis said. “We can also use the metric to assess what combinations of existing drugs will give us the ideal balance between the signaling through the two receptors of the complex.”

Logothetis said the hope is that by using this approach one day researchers will be able to develop a means by which high-throughput screening of drugs can be performed and they also will be able to develop more effective combinations of drugs that are able to help the third of schizophrenic patients who do not respond to current treatments.

Future studies will focus on further identifying the protein targets of the unique signaling pattern of this receptor complex and their link to schizophrenia.

The study was supported by grants from the National Institutes of Health.

EDITOR’S NOTE: A copy of the study is available for reporters by email request from the journal by contacting

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 31,000 students in 216 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see

Sathya Achia Abraham | Newswise Science News
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>