Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop novel 3-D culture system for inflammatory breast cancer

10.12.2012
Inflammatory breast cancer (IBC) is a very rare and aggressive disease that progresses rapidly and is associated with a very low survival rate. To understand how this type of cancer spreads, it's crucial to characterize the interactions between cancer cells and their 3D environment.

Researchers at Fox Chase Cancer Center have developed a novel, 3D culture system that mimics the environment surrounding these cancer cells. This model could be used to test new anticancer drugs capable of inhibiting the spread of IBC tumors.

"The tumor microenvironment plays a pivotal role in tumor development and progression, and it also plays a big role in restricting tumorigenesis," says senior study co-investigator Edna Cukierman, PhD, Associate Professor of Cancer Biology at Fox Chase. "So understanding the interactions between the tumor and the environment will help us to come up with new ways to target the tumor." K Alpaugh, a co-author in this collaborative work, will present the study findings at the 2012 CTRC-AACR San Antonio Breast Cancer Symposium on Saturday, December 8, 2012.

For the study, Cukierman, a tumor microenvironment expert, and her colleagues in the lab of Massimo Cristofanilli, MD, Professor at Fox Chase and a leading expert in inflammatory breast cancer, used tumor-associated stromal cells from patients with advanced IBC to build a 3D structure consisting of cell-derived extracellular matrix—scaffold that provides structural and biochemical support to cells.

After culturing a plethora of established and patient-derived cancer cells in the stromal 3D system, the researchers categorized them into two groups. While some cells showed a significant increase in proliferation and resembled those seen in aggressive tumors, others were more similar to cells in less-aggressive tumors. These two types of cells modified the extracellular matrix in distinct ways, indicating that there is a dynamic interplay between cancer cells and the microenvironment.

Moreover, exposure to the matrix caused all of the cancer cells to increase their expression of the protein epithelial cadherin (i.e., E-Cadherin), whose levels are often elevated in IBC tumors. These findings suggest that the microenvironment may promote the proliferation, growth and invasion of IBC tumors.

"Our system could be used to predict the in vivo behavior of cells and to study the signaling mechanisms that are responsible for tumor-microenvironment interactions in IBC cancer," Cukierman says. "We have some gene candidates that we believe are responsible for the degree of aggressiveness we observe in the 3D model, so we would like to manipulate these genetically using mutants or pharmacologically using inhibitors to block the proteins that we believe are responsible. If that reverses the aggressiveness, it could give us a good hint of what types of targets we could perhaps try to develop and bring to the clinic in the future."

Co-investigators on this study include Xiaoshen Dong, Janusz Franco-Barraza, Zhaomei Mu, R. Katherine Alpaugh and Massimo Cristofanilli from Fox Chase.

Fox Chase Cancer Center, part of the Temple University Health System, is one of the leading cancer research and treatment centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center's nursing program has received the Magnet status for excellence three consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach. For more information, visit Fox Chase's Web site at www.foxchase.org or call 1-888-FOX CHASE or (1-888-369-2427).

Diana Quattrone | EurekAlert!
Further information:
http://www.fccc.edu
http://www.foxchase.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>