Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop first 'theranostic' treatment for acute lymphoblastic leukemia (ALL)

08.03.2012
Study will lead to new approaches in the treatment of pediatric cancers

A team of researchers at Case Western Reserve University School of Medicine has developed the first "theranostic" agent for the treatment of acute lymphoblastic leukemia (ALL).

ALL is the most common type of childhood cancer diagnosed in approximately 5,000 new cases each year in the United States. The findings provide insight into pediatric oncology that specifically focuses on the development of "theranostic" agents-- a treatment platform that combines a selective diagnostic test with targeted therapy based on the test results.

Discovery of this new class of drugs is the first step towards new diagnostic markers and therapeutic approaches in treatments with anti-cancer agents of numerous other cancers in addition to ALL.

"This discovery takes a chemical biology approach to target ALL. Our nucleosides represent a new class of theranostic agents that provide an original approach to achieving personalized treatments against pediatric leukemia," says Anthony J. Berdis, PhD, assistant professor of pharmacology at Case Western Reserve School of Medicine.

"We've developed a non-natural nucleoside that specifically targets this form of childhood leukemia. The combination of therapeutic and diagnostic activities will provide more selective and more expedient ways to treat patients by optimizing the dosages needed to kill the cancer cells without affecting normal cells. This selectivity should minimize the development of adverse side effects typically associated with conventional anti-cancer nucleosides," says Dr. Berdis.

Using an enzyme implicated in the disease, terminal deoxynucleotidyl transferase (TdT) which serves as a biomarker and is overexpressed in 90 percent of ALL patients, Dr. Berdis and his team designed a new selective anti-cancer agent against ALL. By evaluating the anti-leukemia activities of two non-natural nucleotides designated 5-NITP and 3-Eth-5-NITP, the investigators strategically placed novel functional groups on these agents so that they could be tagged with fluorogenic dyes. These taggable nucleotides improve the accuracy of dosing regiments and could accelerate clinical decisions regarding therapeutic intervention. The next steps will be validation in animal studies and toxicology testing, leading to clinical trials.

This study appears online this week in ACS Chemical Biology. In addition to Dr. Berdis, co-authors on the paper include Edward A. Motea and Dr. Irene Lee, in the Department of Chemistry and Department of Pharmacology at Case Western Reserve.

Acute lymphoblastic leukemia (ALL) is a form of leukemia, or cancer of the white blood cells characterized by excess lymphoblasts. Acute refers to the relatively short time course of the disease (being fatal in as little as a few weeks if left untreated). This disease is caused when malignant, immature white blood cells continuously multiply and are overproduced in the bone marrow. ALL causes damage and death by crowding out normal cells in the bone marrow and by spreading to other organs. Although ALL is most common in childhood with a peak incidence at 2-5 years of age, this type of leukemia is also prevalent in people over the age of 60.

Funding for this research was provided by the NIH and the National Cancer Institute Training Programs in Cancer Pharmacology.

This research was supported by the Developmental Therapautics Program at the Case Comprehensive Cancer Center, a National Cancer Institute (NCI) - designated Comprehensive Cancer Center located at Case Western Reserve University in Cleveland, Ohio. NCI-designated cancer centers are characterized by scientific excellence and the capability to integrate a diversity of research approaches to focus on the problem of cancer. Lead by Stanton Gerson, MD, Asa and Patricia Shiverick- Jane Shiverick (Tripp) Professor of Hematological Oncology, director of the Case Comprehensive Cancer Center, and director of the Seidman Cancer Center at UH Case Medical Center. The Case Comprehensive Cancer Center, now in its 22nd year of funding, integrates the cancer research activities of the largest biomedical research and health care institutions in Ohio – Case Western Reserve University, University Hospitals Case Medical Center, Cleveland Clinic and MetroHealth Medical Center.

About Case Western Reserve University School of Medicine

Founded in 1843, Case Western Reserve University School of Medicine is the largest medical research institution in Ohio and is among the nation's top medical schools for research funding from the National Institutes of Health. The School of Medicine is recognized throughout the international medical community for outstanding achievements in teaching. The School's innovative and pioneering Western Reserve2 curriculum interweaves four themes--research and scholarship, clinical mastery, leadership, and civic professionalism--to prepare students for the practice of evidence-based medicine in the rapidly changing health care environment of the 21st century. Nine Nobel Laureates have been affiliated with the school of medicine.

Annually, the School of Medicine trains more than 800 MD and MD/PhD students and ranks in the top 25 among U.S. research-oriented medical schools as designated by U.S. News & World Report "Guide to Graduate Education."

The School of Medicine's primary affiliate is University Hospitals Case Medical Center and is additionally affiliated with MetroHealth Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and the Cleveland Clinic, with which it established the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University in 2002. http://casemed.case.edu.

Christine Ann Somosi | EurekAlert!
Further information:
http://www.case.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>