Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers closer to understanding the evolution of sound production in fish

16.12.2011
An international team of researchers studying sound production in perch-like fishes has discovered a link between two unrelated lineages of fishes, taking researchers a step closer to understanding the evolution of one of the fastest muscles in vertebrates.

Understanding the evolution of such fast muscles has been difficult for researchers because slow movement of a swimbladder does not generate sound.

In a study published online Nov. 29 in the journal Frontiers in Zoology, Virginia Commonwealth University biologists, together with researchers Hin-Kiu Mok, Ph.D., at the National Sun Yat-sen University in Taiwan, and Eric Parmentier, Ph.D., at the Université de Liège in Belgium, have found that the pearl-perch belonging to the fish order Perciformes utilizes a hybrid system with characteristics of slow and fast systems. The findings suggest an intermediate condition in the evolution of superfast sonic muscles that drive swimbladder vibration directly. Perciforms are one of the largest orders of vertebrates.

"This work for the first time demonstrates an intermediate condition in the potential evolution of these superfast muscles," said investigator Michael Fine, Ph.D., professor of biology at VCU, who served as corresponding author for the study.

"It's sort of like finding a fossil whale with leg bones indicating affinity to a terrestrial vertebrate, or a dinosaur with feathers indicating potential steps in the evolution of reptiles into birds," he said.

According to Fine, a number of fish produce sounds by contracting superfast muscles that vibrate the swimbladder to produce aggressive and courtship calls. For example, in the oyster toadfish found on the east coast of the United States, swimbladder muscles routinely contract more than 200 times a second when a male is calling for a mate. Fine and his colleagues recently found a group of fishes that produce sound by using slow muscles to pull the swimbladder, which then snaps back - like a rubber band - to produce sound. In this case the pearl perch has a hybrid system that uses a slow system but actually pulls the swimbladder forward with a fast muscle. The fish has a tendon that gets stretched and causes the bladder to snap back, producing the loud part of the sound.

"What is special about this perciform is that its sound producing system appears to have intermediate characteristics between slow systems which are only known in ophidiiform fishes, and fast muscles present in different groups of fishes," he said.

The work was supported in part by a grant from the National Science Council of Taiwan and the F.R.S.-FNRS in Belgium.

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 31,000 students in 216 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see http://www.vcu.edu

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>