Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers closer to understanding the evolution of sound production in fish

16.12.2011
An international team of researchers studying sound production in perch-like fishes has discovered a link between two unrelated lineages of fishes, taking researchers a step closer to understanding the evolution of one of the fastest muscles in vertebrates.

Understanding the evolution of such fast muscles has been difficult for researchers because slow movement of a swimbladder does not generate sound.

In a study published online Nov. 29 in the journal Frontiers in Zoology, Virginia Commonwealth University biologists, together with researchers Hin-Kiu Mok, Ph.D., at the National Sun Yat-sen University in Taiwan, and Eric Parmentier, Ph.D., at the Université de Liège in Belgium, have found that the pearl-perch belonging to the fish order Perciformes utilizes a hybrid system with characteristics of slow and fast systems. The findings suggest an intermediate condition in the evolution of superfast sonic muscles that drive swimbladder vibration directly. Perciforms are one of the largest orders of vertebrates.

"This work for the first time demonstrates an intermediate condition in the potential evolution of these superfast muscles," said investigator Michael Fine, Ph.D., professor of biology at VCU, who served as corresponding author for the study.

"It's sort of like finding a fossil whale with leg bones indicating affinity to a terrestrial vertebrate, or a dinosaur with feathers indicating potential steps in the evolution of reptiles into birds," he said.

According to Fine, a number of fish produce sounds by contracting superfast muscles that vibrate the swimbladder to produce aggressive and courtship calls. For example, in the oyster toadfish found on the east coast of the United States, swimbladder muscles routinely contract more than 200 times a second when a male is calling for a mate. Fine and his colleagues recently found a group of fishes that produce sound by using slow muscles to pull the swimbladder, which then snaps back - like a rubber band - to produce sound. In this case the pearl perch has a hybrid system that uses a slow system but actually pulls the swimbladder forward with a fast muscle. The fish has a tendon that gets stretched and causes the bladder to snap back, producing the loud part of the sound.

"What is special about this perciform is that its sound producing system appears to have intermediate characteristics between slow systems which are only known in ophidiiform fishes, and fast muscles present in different groups of fishes," he said.

The work was supported in part by a grant from the National Science Council of Taiwan and the F.R.S.-FNRS in Belgium.

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 31,000 students in 216 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see http://www.vcu.edu

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>