Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers closer to understanding the evolution of sound production in fish

An international team of researchers studying sound production in perch-like fishes has discovered a link between two unrelated lineages of fishes, taking researchers a step closer to understanding the evolution of one of the fastest muscles in vertebrates.

Understanding the evolution of such fast muscles has been difficult for researchers because slow movement of a swimbladder does not generate sound.

In a study published online Nov. 29 in the journal Frontiers in Zoology, Virginia Commonwealth University biologists, together with researchers Hin-Kiu Mok, Ph.D., at the National Sun Yat-sen University in Taiwan, and Eric Parmentier, Ph.D., at the Université de Liège in Belgium, have found that the pearl-perch belonging to the fish order Perciformes utilizes a hybrid system with characteristics of slow and fast systems. The findings suggest an intermediate condition in the evolution of superfast sonic muscles that drive swimbladder vibration directly. Perciforms are one of the largest orders of vertebrates.

"This work for the first time demonstrates an intermediate condition in the potential evolution of these superfast muscles," said investigator Michael Fine, Ph.D., professor of biology at VCU, who served as corresponding author for the study.

"It's sort of like finding a fossil whale with leg bones indicating affinity to a terrestrial vertebrate, or a dinosaur with feathers indicating potential steps in the evolution of reptiles into birds," he said.

According to Fine, a number of fish produce sounds by contracting superfast muscles that vibrate the swimbladder to produce aggressive and courtship calls. For example, in the oyster toadfish found on the east coast of the United States, swimbladder muscles routinely contract more than 200 times a second when a male is calling for a mate. Fine and his colleagues recently found a group of fishes that produce sound by using slow muscles to pull the swimbladder, which then snaps back - like a rubber band - to produce sound. In this case the pearl perch has a hybrid system that uses a slow system but actually pulls the swimbladder forward with a fast muscle. The fish has a tendon that gets stretched and causes the bladder to snap back, producing the loud part of the sound.

"What is special about this perciform is that its sound producing system appears to have intermediate characteristics between slow systems which are only known in ophidiiform fishes, and fast muscles present in different groups of fishes," he said.

The work was supported in part by a grant from the National Science Council of Taiwan and the F.R.S.-FNRS in Belgium.

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 31,000 students in 216 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see

Sathya Achia Abraham | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>