Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research uncovers extensive natural recovery after spinal cord injury

15.11.2010
A study led by researchers in the Department of Neurosciences at the University of California, San Diego School of Medicine shows unexpected and extensive natural recovery after spinal cord injury in primates. The findings, to be published November 14 in the advance online edition of Nature Neuroscience, may one day lead to the development of new treatments for patients with spinal cord injuries.

While regeneration after severe brain and spinal cord injury is limited, milder injuries are often followed by good functional recovery. To investigate how this occurs, UC San Diego and VA Medical Center San Diego researchers studied adult rhesus monkeys. The team was surprised to see that connections between circuits in the spinal cord re-grew spontaneously and extensively, restoring fully 60% of the connections 24 weeks after a mild spinal cord injury.

"The number of connections in spinal cord circuits drops by 80 percent immediately after the injury," said Ephron Rosenzweig, PhD, assistant project scientist in UCSD Department of Neurosciences. "But new growth sprouting from spared axons – the long fibers extending from the brain cells, or neurons, which carry signals to other neurons in the central nervous system – restored more than half of the original number of connections." He added that this was particularly surprising since the phenomenon does not appear in rodents – the traditional study model.

The research was led by Rosenzweig and Gregoire Courtine of the University of Zurich in Switzerland. Senior study director was Mark H. Tuszynski, MD, PhD, professor of neurosciences and director of the Center for Neural Repair at UC San Diego, and neurologist at the Veterans Affairs San Diego Health System.

It was not previously known that an injured spinal cord could naturally restore such a high proportion of connections. More profoundly, the spontaneous recovery was accompanied by extensive recovery of movement on the affected side of the body. Tuszynski said the team is now investigating how the nervous system is able to generate so much natural growth after injury. This knowledge could lead to development of drugs or genes that could transmit high-growth signals to spinal cord damage sites after more severe spinal cord injury.

The work highlights an important role for primate models in translating basic scientific research into practical, therapeutic treatments for people. The spinal cords of humans and other primates are different from rodents, both in overall anatomy and in specific functions. For example, the corticospinal tract – a collection of nerve cell fibers linking the cerebral cortex of the brain and the spinal cord – is much more important for muscle movement in primates than in rats.

"With similar injuries, rodents show much less regrowth and recovery of limb function," said Rosenzweig. The challenge now is to determine what exactly is prompting neuronal axons to sprout new connections, leading to recovered movement. That has exciting clinical relevance, Rosenzweig said, because discoveries resulting from further research could be applied to patients with severe injury to their central nervous system.

Additional contributors to the study include John H. Brock and Darren M. Miller, UCSD Department of Neurosciences; Gregoire Courtine, UCLA and University of Zurich; Devin L. Jindrich, Roland R. Roy, Leif A. Havton and V. Reggie Edgerton, UCLA; Adam R. Ferguson, Yvette S. Nout, Michael S. Beattie, and Jacqueline C. Bresnahan, UC Davis; and Sarah C. Strand, UC San Francisco.

This study was supported by the National Institutes of Health, the Veterans Administration, California Roman-Reed funds, the Bernard and Anne Spitzer Charitable Trust, and the Dr.Miriam and Sheldon G. Adelson Medical Research Foundation.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>