Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Turns the World Upside Down

19.04.2011
New Study Examines Brain Processes Behind Facial Recognition

When you think you see a face in the clouds or in the moon, you may wonder why it never seems to be upside down.

It turns out the answer to this seemingly minor detail is that your brain has been wired not to.

Using tests of visual perception and functional magnetic resonance imaging (fMRI), Lars Strother and colleagues at The University of Western Ontario’s world-renowned Centre for Brain & Mind recently measured activity in two regions of the brain well known for facial recognition and found they were highly sensitive to the orientation of people’s faces.

The team had participants look at faces that had been camouflaged and either held upright or turned upside down. They found that right-side up faces were easier to see – and activated the face areas in the brain more strongly – thus demonstrating that our brains are specialized to understand this orientation.

The surprise came when they found this bias in brain activity also applies to pictures of animals.

Like faces, animals are biological visual forms that have a typical upright orientation. In the study, published in the current issue of the journal PLoS ONE, Strother and his colleagues propose that the human visual system allows us to see familiar objects – not just faces – more easily when viewed in the familiar upright orientation.

They also demonstrated this bias can be found in the neural activity of those brain areas involved with the most basic steps in visual processing, when visual inputs from the eyes first reach the brain.

In future research, the team hopes to chase down how this bias is set up in these early visual areas of the brain – and what this tells us about how brain circuits can be modified by knowledge and experience.

Contact:

Lars Strother, Post-doctoral fellow, Centre for Brain and Mind, 519 661-2111 ext 83481, lstroth@uwo.ca

Mel Goodale, Director, Centre for Brain & Mind, 519 661-2070, mgoodale@uwo.ca

Douglas Keddy, Research Communications Manager, 519-661-2111 ext. 87485, dkeddy@uwo.ca

Lars Strother | EurekAlert!
Further information:
http://www.uwo.ca

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>