Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Turns the World Upside Down

19.04.2011
New Study Examines Brain Processes Behind Facial Recognition

When you think you see a face in the clouds or in the moon, you may wonder why it never seems to be upside down.

It turns out the answer to this seemingly minor detail is that your brain has been wired not to.

Using tests of visual perception and functional magnetic resonance imaging (fMRI), Lars Strother and colleagues at The University of Western Ontario’s world-renowned Centre for Brain & Mind recently measured activity in two regions of the brain well known for facial recognition and found they were highly sensitive to the orientation of people’s faces.

The team had participants look at faces that had been camouflaged and either held upright or turned upside down. They found that right-side up faces were easier to see – and activated the face areas in the brain more strongly – thus demonstrating that our brains are specialized to understand this orientation.

The surprise came when they found this bias in brain activity also applies to pictures of animals.

Like faces, animals are biological visual forms that have a typical upright orientation. In the study, published in the current issue of the journal PLoS ONE, Strother and his colleagues propose that the human visual system allows us to see familiar objects – not just faces – more easily when viewed in the familiar upright orientation.

They also demonstrated this bias can be found in the neural activity of those brain areas involved with the most basic steps in visual processing, when visual inputs from the eyes first reach the brain.

In future research, the team hopes to chase down how this bias is set up in these early visual areas of the brain – and what this tells us about how brain circuits can be modified by knowledge and experience.

Contact:

Lars Strother, Post-doctoral fellow, Centre for Brain and Mind, 519 661-2111 ext 83481, lstroth@uwo.ca

Mel Goodale, Director, Centre for Brain & Mind, 519 661-2070, mgoodale@uwo.ca

Douglas Keddy, Research Communications Manager, 519-661-2111 ext. 87485, dkeddy@uwo.ca

Lars Strother | EurekAlert!
Further information:
http://www.uwo.ca

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>