Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Turns the World Upside Down

19.04.2011
New Study Examines Brain Processes Behind Facial Recognition

When you think you see a face in the clouds or in the moon, you may wonder why it never seems to be upside down.

It turns out the answer to this seemingly minor detail is that your brain has been wired not to.

Using tests of visual perception and functional magnetic resonance imaging (fMRI), Lars Strother and colleagues at The University of Western Ontario’s world-renowned Centre for Brain & Mind recently measured activity in two regions of the brain well known for facial recognition and found they were highly sensitive to the orientation of people’s faces.

The team had participants look at faces that had been camouflaged and either held upright or turned upside down. They found that right-side up faces were easier to see – and activated the face areas in the brain more strongly – thus demonstrating that our brains are specialized to understand this orientation.

The surprise came when they found this bias in brain activity also applies to pictures of animals.

Like faces, animals are biological visual forms that have a typical upright orientation. In the study, published in the current issue of the journal PLoS ONE, Strother and his colleagues propose that the human visual system allows us to see familiar objects – not just faces – more easily when viewed in the familiar upright orientation.

They also demonstrated this bias can be found in the neural activity of those brain areas involved with the most basic steps in visual processing, when visual inputs from the eyes first reach the brain.

In future research, the team hopes to chase down how this bias is set up in these early visual areas of the brain – and what this tells us about how brain circuits can be modified by knowledge and experience.

Contact:

Lars Strother, Post-doctoral fellow, Centre for Brain and Mind, 519 661-2111 ext 83481, lstroth@uwo.ca

Mel Goodale, Director, Centre for Brain & Mind, 519 661-2070, mgoodale@uwo.ca

Douglas Keddy, Research Communications Manager, 519-661-2111 ext. 87485, dkeddy@uwo.ca

Lars Strother | EurekAlert!
Further information:
http://www.uwo.ca

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>