Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team discovers genetic variance in cancer protection from statin drugs

22.04.2010
Findings should help personalize use of the drug, NewYork-Presbyterian/Weill Cornell scientists say

Researchers at NewYork-Presbyterian Hospital/Weill Cornell Medical Center have discovered why statins -- popular drugs that lower cholesterol and appear to protect against colorectal cancer development -- work for some people, but not for all.

In the May issue of Cancer Prevention Research, the researchers say that, based on their study, about 44 percent of Caucasians taking statins likely are not protected against cancer as well as others because they have inherited a particular gene variant. They say this finding might help personalize the use of statins, both by offering patients a test to determine if they have the "right" gene to benefit from current statin drugs, and by providing insight into how to create a new class of statins for those who have the "wrong" gene profile.

"Given that approximately 25 million individuals worldwide currently use statins, we anticipate this discovery may prompt development of more precise, personalized and cost-effective cancer risk reduction strategies," says the study's co-lead author, Dr. Steven M. Lipkin, associate professor of medicine and of genetic medicine at Weill Cornell Medical College and a geneticist and internist at NewYork-Presbyterian Hospital/Weill Cornell Medical Center.

The other lead author is Dr. Stephen B. Gruber, professor of internal medicine, epidemiology and human genetics at the University of Michigan Medical School. The research team also includes scientists from the University of Barcelona, the National Cancer Institute and the Israel Institute of Technology.

The researchers tested their hypothesis that people who don't respond well to the cholesterol-lowering ability of statins also do not benefit from recently documented protective effects of statins against colorectal cancer, and that the difference was in genetic variation that led to a different response to the drug.

In this study, the research team genotyped 40 candidate genes known to be important for synthesis and metabolism of cholesterol in people who participated in a population case-control study of colorectal cancer in northern Israel. Included were 1,780 colon cancer patients and 1,863 people who did not have colorectal cancer, and many of the participants, who were predominantly Caucasian, had used statins for a long time. In the initial study, statin use was associated with a 50 percent relative risk of developing colorectal cancer in this population.

Included in the 40 genes were six SNPs, or DNA sequences, within the HMGCR gene, which produces a critical enzyme involved in formation of cholesterol.

They found one SNP within HMGCR that was associated with statin protection against colorectal cancer. A follow-up pharmacogenetic analysis showed that the protective association was significantly stronger among individuals with what they dubbed the "A" SNP allele, or variant, compared with people who had a "T" variant. Because a person inherits two variants, one from each parent, the stronger colorectal cancer protection came from individuals with the A/A HMGCR genotype, compared with those with the T/T genotype. Individuals with an A/T genotype had intermediate protection against colorectal cancer -- levels that varied between that seen for A/A and T/T genotypes.

Dr. Lipkin estimates that, in this Caucasian population, 56 percent had at least one A allele in that HMGCR genomic position.

They then tested, in laboratory colorectal cancer cells, why the T allele might not work well with statins, and found that the protein produced by this HMGCR gene variant does not bind on to the statin like the A allele does, due to "alternative splicing" -- the production of a protein that is slightly altered.

"Carriers of the A allele express more of the full-length protein that binds statins, and are therefore more sensitive to statins and are more likely to experience the colorectal cancer risk reduction associated with long-term use. That is especially true if a person has two A alleles," says Dr. Lipkin. "Carriers of the T allele are less sensitive to statins because they are missing part of the protein that binds to statins. A protective effect against colorectal cancer development is largely absent from people who have two T alleles."

"Together, these studies provide strong evidence that these two alleles play an important role in modulation of HMGCR activity for colorectal risk reduction," Dr. Lipkin says. "We anticipate that genotyping for these alleles in patients may help identify those who are most likely to benefit from statins, and spare others who will not respond from any side effects of the drugs."

Dr. Lipkin believes most of the many statin drugs on the market work by binding on to the HMGCR protein. Most of the participants in this study used simvastatin (marketed under the trade names Zocor, Simlup, Simcard, Simvacor, and others), and pravastatin (marketed as Pravachol or Selektine).

The study was funded by the National Cancer Institute, a University of Michigan Cancer Center Support grant, the Spanish Secretaria de Estado de Universidades e Investigación, and the Ravitz Foundation.

For more information, patients may call (866) NYP-NEWS.

NewYork-Presbyterian Hospital/Weill Cornell Medical Center

NewYork-Presbyterian Hospital/Weill Cornell Medical Center, located in New York City, is one of the leading academic medical centers in the world, comprising the teaching hospital NewYork-Presbyterian and Weill Cornell Medical College, the medical school of Cornell University. NewYork-Presbyterian/Weill Cornell provides state-of-the-art inpatient, ambulatory and preventive care in all areas of medicine, and is committed to excellence in patient care, education, research and community service. Weill Cornell physician-scientists have been responsible for many medical advances -- including the development of the Pap test for cervical cancer; the synthesis of penicillin; the first successful embryo-biopsy pregnancy and birth in the U.S.; the first clinical trial for gene therapy for Parkinson's disease; the first indication of bone marrow's critical role in tumor growth; and, most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. NewYork-Presbyterian Hospital also comprises NewYork-Presbyterian Hospital/Columbia University Medical Center, NewYork-Presbyterian/Morgan Stanley Children's Hospital, NewYork-Presbyterian Hospital/Westchester Division and NewYork-Presbyterian/The Allen Hospital. NewYork-Presbyterian is the #1 hospital in the New York metropolitan area and is consistently ranked among the best academic medical institutions in the nation, according to U.S.News & World Report. Weill Cornell Medical College is the first U.S. medical college to offer a medical degree overseas and maintains a strong global presence in Austria, Brazil, Haiti, Tanzania, Turkey and Qatar.

Andrew Klein | EurekAlert!
Further information:
http://www.med.cornell.edu
http://www.nyp.org

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>