Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research suggests new therapeutic approach for spinal cord injury

Results reported in the American Journal of Pathology

A new study suggests that administering FTY720, an oral drug that has shown promise in trials for human multiple sclerosis, significantly improves locomotor recovery in mice with spinal cord injury (SCI). The research suggests a possible new avenue to counteract the degeneration of the spinal cord in human SCI. The study will be published in the April 2012 issue of The American Journal of Pathology.

Beyond the initial tissue damage, much of the degradation of the spinal cord in SCI is due to a cascade of secondary injuries, including neuronal and glial apoptosis, inflammation, glial scar formation, local edema and ischemia, and oxidative stress. The aim of current SCI treatment is to counteract the mechanisms of secondary injury and prevent their pathological consequences, because central nervous system (CNS) neurons have very limited capacity to self-repair and regenerate.

Researchers from the Jichi Medical University School of Medicine and the Graduate School of Medicine at the University of Tokyo had previously shown that the concentration of the lysophospholipid mediator, sphingosine 1-phosphate (S1P), was significantly increased in the location of a contusion injury, triggering the migration of neural progenitor/stem cells to the site of the injury. They hypothesized that targeting S1P receptors may become a candidate therapy for various refractory central nervous system disorders, including SCI.

FTY720 acts as a broad S1P receptor modulator. Its efficacy in central nervous system disorders is believed to derive from immunomodulation. Researchers found that orally administering FTY720 to mice shortly after contusion SCI significantly improved motor function recovery. Importantly, they found that the therapeutic effects of FTY720 were not solely dependent on immune modulation. The administration of FTY720 induced lymphopenia, clearing lymphocytes from the blood, and reduced T-cell infiltration in the spinal cord. But it did not affect the early infiltration of neutrophils and activation of microglia, and it did not reduce plasma levels and mRNA expression of inflammatory cytokines in the spinal cord. Tests in mice with severe combined immunodeficiency (SCID mice) with SCI found that FTY720 significantly improved recovery of hind limb motor function.

"These data clearly indicate the importance of immune-independent functions of FTY720 in the amelioration of functional deficits after SCI in mice," explains lead investigator Yoichi Sakata, MD, PhD, Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University School of Medicine.

Dr. Sakata notes that S1P receptors exist in many types of cells and play a role in many cellular processes. "We observed that FTY720 decreased vascular permeability and astrocyte accumulation in injured spinal cord. These changes were also noted in SCID mice, suggesting they are not dependent on lymphocyte function. Increased vascular permeability can lead to destruction of the blood-brain barrier in spinal cord, and astrocyte accumulation is the main cellular component of glial scar after CNS injury. FTY720 might counteract these secondary injuries and thereby prevent their pathological consequences."

"Our data suggest that targeting S1P receptors with FTY720 is an attractive therapeutic approach for SCI," Dr. Sakata concludes. "However, further evaluation utilizing larger animals such as non-human primates will be necessary to confirm its efficacy in treating SCI. Further, strategies targeted at modulating the SIP concentration in injured CNS may lead to new therapeutic approaches towards repairing various CNS disorders."

David Sampson | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>