Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research suggests cap and trade programs do not provide sufficient incentives for innovation

16.03.2012
Cap and trade programs to reduce emissions do not inherently provide incentives to induce the private sector to develop innovative technologies to address climate change, according to a new study in the journal Proceedings of the National Academy of Sciences.
In fact, said author Margaret Taylor, a researcher at Lawrence Berkeley National Laboratory (Berkeley Lab) who conducted the study while an assistant professor at the University of California, Berkeley's Goldman School of Public Policy, the success of some cap and trade programs in achieving predetermined pollution reduction targets at low cost seems to have reduced incentives for research and development that could help develop more appropriate pollution control targets. Taylor is a scientist in the Environmental Energy Technologies Division of Berkeley Lab.

"Policymakers rarely see with perfect foresight what the appropriate emissions targets are to protect the public health and environment—the history is that these targets usually need to get stricter," said Taylor. "Yet policymakers also seldom set targets they don't have evidence that industry can meet. This is where R&D that can lead to the development of innovative technologies over the longer term is essential."

In the study, Taylor explored the relationship between innovation and cap and trade programs (CTPs). She used empirical data from the world's two most successful CTPs, the U.S. national market for sulfur dioxide (SO2) control and the northeast and mid-Atlantic states' market for nitrogen oxide (NOx) control. (Respectively, Title IV of the 1990 Clean Air Act and the Ozone Transport Commission/NOx Budget Program.)

Taylor's research shows that before trading began for these CTPs, analysts overestimated how difficult it would be for emissions sources to achieve targets, in a pattern frequently observed in environmental health, safety, and energy efficiency regulation, including all of the world's CTPs. This was seen in overestimates of the value of allowances, which are permits to release a certain volume of emissions under a CTP. If an entity can reduce emissions cheaply, they can either sell these allowances for whatever price they can get on the market or they can bank these allowances to meet later emissions restrictions.

The cap-and-trade programs Taylor studied exhibited lower-than-expected allowance prices, in part because program participants adopted an unexpected range of approaches for reducing emissions sources in the lead-up to trading. A large bank of allowances grew in response, particularly in the SO2 program, signaling that allowance prices would remain relaxed for many years.

But this low-price message did not cause the policy targets in the CTPs to change, despite evidence that it would not only be cheaper than expected to meet these targets, but it would also be more important to public health to tighten the targets, based on scientific advances. The lower-than-expected price signal did cause emissions sources to reassess their clean technology investments, however, and led to significant cancellations, Taylor reported.

Meanwhile, the low price also signaled to innovators working to develop clean technologies – which are often distinct from the emissions sources that hold allowances – that potential returns to their research and development programs, which generally have uncertain and longer-term payoffs, would be lower than expected.

This effect also helps explain the study's finding that patenting activity, the dominant indicator of commercially-oriented research and development, peaked before these CTPs were passed and then dropped once allowance markets began operating, reaching low levels not seen since national SO2 and NOx regulation began in 1970.

"There are usually relatively cheap and easy things to do at the start of any new environmental policy program," said Taylor, who specializes in policy analysis, environmental and energy policy, and innovation. "But if doing these things has the tradeoff of dampening the incentives for longer-term innovation, there can be a real problem, particularly when dramatic levels of technological change are needed, such as in the case of stabilizing the global climate."

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

Allan Chen | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>