Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Research Shows that Workplace Discrimination Increases in Times of Economic Turmoil

When the economy worsens, what happens to diversity programs and affirmative action policies in the workplace?

New research by Eden King, assistant professor of psychology at George Mason University, suggests that workplace discrimination can actually increase when people feel threatened by outside factors such as finances.

A recent study by King and co-researchers showed that people who support diversity programs have changing attitudes in times of economic strife. In addition, those in hiring positions may be less likely to hire a minority job applicant in an economic downturn.

Many workers are experiencing negative financial repercussions, including reduction in bonuses, fewer promotions, furloughs and layoffs. Competition for fewer jobs and resources often increases stigmatization and tension among workers, and can leave minority groups as real outsiders, King says.

"The reality is, diversity programs and disadvantaged groups may be the first to go in times of economic uncertainty," says King. "This causes real problems for people of socially disadvantaged groups."

King and her co-authors found that when white men and women were told that the economy might take a downturn, and were then asked to evaluate four equally qualified candidates for a job, they favored the white male candidate. On the other hand, when another group of white men and women believed that the economy might improve, they tended to favor the female Hispanic candidate.

"In good economic times, people know they are supposed to support diversity and will tend to hire a minority candidate to get affirmative action points," says King. "But when times are tough, people tend to look out for their own group and isolate outsiders, and that's when discrimination can begin to rear its ugly head."

King says that managers and human resources employees should be cautious about prejudice in today's unstable workplace. "They need to understand that the short-term solution of cutting diversity programs might ultimately end up costing them even more in the long-run."

About George Mason University
Named the #1 national university to watch by U.S. News & World Report, George Mason University is an innovative, entrepreneurial institution with global distinction in a range of academic fields. Located in the heart of Northern Virginia’s technology corridor near Washington, D.C., Mason prepares its students to succeed in the work force and meet the needs of the region and the world. With strong undergraduate and graduate degree programs in engineering and information technology, dance, organizational psychology and health care, Mason students are routinely recognized with national and international scholarships. Mason professors conduct groundbreaking research in areas such as cancer, climate change, information technology and the biosciences, and Mason’s Center for the Arts brings world-renowned artists, musicians and actors to its stage.

Tara Laskowski | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>