Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research shows strategic thinking strengthens intellectual capacity

28.04.2014

Gist-reasoning training proven beneficial in normal and clinical populations

Strategy-based cognitive training has the potential to enhance cognitive performance and spill over to real-life benefit according to a data-driven perspective article by the Center for BrainHealth at The University of Texas at Dallas published in the open-access journal Frontiers in Systems Neuroscience.

The research-based perspective highlights cognitive, neural and real-life changes measured in randomized clinical trials that compared a gist-reasoning strategy-training program to memory training in populations ranging from teenagers to healthy older adults, individuals with brain injury to those at-risk for Alzheimer's disease.

"Our brains are wired to be inspired," said Dr. Sandra Bond Chapman, founder and chief director of the Center for BrainHeath and Dee Wyly Distinguished University Chair at The University of Texas at Dallas. "One of the key differences in our studies from other interventional research aimed at improving cognitive abilities is that we did not focus on specific cognitive functions such as speed of processing, memory, or learning isolated new skills. Instead, the gist reasoning training program encouraged use of a common set of multi-dimensional thinking strategies to synthesize information and elimination of toxic habits that impair efficient brain performance."

The training across the studies was short, ranging from 8 to 12 sessions delivered over one to two months in 45 to 60 minute time periods. The protocol focused on three cognitive strategies -- strategic attention, integrated reasoning and innovation. These strategies are hierarchical in nature and can be broadly applied to most complex daily life mental activities.

At a basic level, research participants were encouraged to filter competing information that is irrelevant and focus only on important information. At more advanced levels, participants were instructed to generate interpretations, themes or generalized statements from information they were wanting or needing to read, for example. Each strategy built on previous strategies and research participants were challenged to integrate all steps when tackling mental activities both inside and outside of training.

"Cognitive gains were documented in trained areas such as abstracting, reasoning, and innovating," said Chapman. "And benefits also spilled over to untrained areas such as memory for facts, planning, and problem solving. What's exciting about this work is that in randomized trials comparing gist reasoning training to memory training, we found that it was not learning new information that engaged widespread brain networks and elevated cognitive performance, but rather actually deeper processing of information and using that information in new ways that augmented brain performance.

Strengthening intellectual capacity is no longer science fiction; what used to seem improbable is now in the realm of reality."

Positive physical changes within the brain and cognitive improvement across populations in response to strategy-based mental training demonstrate the neuro-regenerative potential of the brain.

"The ability to recognize, synthesize and create the essence of complex ideas and problems to solve are fundamental skills for academic, occupational and real-life success," Chapman said. "The capacity to enhance cognition and complex neural networks in health, after injury or disease diagnosis will have major implications to preventing, diagnosing and treating cognitive decline and enhancing cognitive performance in youth to prepare them for an unknown future and in middle age to older adults who want to remain mentally robust."

###

About the Center for BrainHealth

The Center for BrainHealth at The University of Texas at Dallas is a scientific research institute committed to understanding, protecting and healing the brain. With more than 60 fully- funded research projects, scientific exploration at the Center for BrainHealth is leading edge, innovative, improving lives today and translating groundbreaking discoveries into practical clinical application. Cognitive neuroscience experts at the Center for BrainHealth are dedicated to discovering ways to build resilience, regain cognitive function and retrain the brain to maximize the potential of the most vital organ. For more information, visit http://www.centerforbrainhealth.org

Shelly Kirkland | Eurek Alert!

Further reports about: activities capacity cognitive diagnosis networks populations processing strategies synthesize

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>