Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research shows that some features of human face perception are not uniquely human

12.04.2011
When it comes to picking a face out of a police lineup, would you guess that you would use some of the same processes a pigeon might use?

If you said "yes," then you're right.

A study published by two University of Iowa researchers in the March 31 issue of the Journal of Vision found that pigeons recognize a human face's identity and emotional expression in much the same way as people do.

Pigeons were shown photographs of human faces that varied in the identity of the face, as well as in their emotional expression -- such as a frown or a smile. In one experiment, pigeons, like humans, were found to perceive the similarity among faces sharing identity and emotion. In a second, key experiment, the pigeons' task was to categorize the photographs according to only one of these dimensions and to ignore the other. The pigeons found it easier to ignore emotion when they recognized face identity than to ignore identity when they recognized face emotion, according to Ed Wasserman, Stuit Professor of Experimental Psychology, and graduate student Fabian Soto, both of the UI College of Liberal Arts and Sciences Department of Psychology.

"This asymmetry has been found many times in experiments with people and it has always been interpreted as the result of the unique organization of the human face processing system." Soto said. "We have provided the first evidence suggesting that this effect can arise from perceptual processes present in other vertebrates.

"The point of the project is not that pigeons perceive faces just as we do or that people do not have specialized processes for face perception. Rather, the point is that both specialized and general processes are likely to be involved in peoples' recognition of faces and that the contributions of each should be carefully determined empirically," he added.

In fact, the findings could make scientists reconsider their assumptions about how uniquely human cognitive processes might interact with more general processes in complex tasks such as face recognition.

"It is a popular practice among researchers in perception and cognition to speculate about specialized mechanisms without offering convincing empirical data to support their ideas. We hope that our research will prompt other researchers to conduct more comparative work to assess their claims about the evolution of uniquely human perceptual and cognitive processes," Wasserman said.

The researchers studied pigeons in this project because they have excellent vision and are not close evolutionary relatives of humans. Pigeons do not have a specialized system for face processing, but they still show similarities to people when they are trained to recognize human faces. The simplest interpretation of these similarities is that they result from general recognition processes shared by both species.

The experiments were conducted in Wasserman's laboratory in 2009 and 2010.

The research was funded by grants from the National Institute of Mental Health and the National Eye Institute.

See http://www.journalofvision.org/content/11/3/24.full to read the entire paper.

Wasserman earned his doctorate in psychology from Indiana University and has been with the UI since 1972. His research interests include the comparative analysis of learning, memory, and cognition, with special interests in conceptualization, causation, and visual perception. He has taught several graduate and undergraduate courses in experimental psychology and behavioral and cognitive neuroscience.

Soto is a graduate student in the Cognition and Perception area of the Department of Psychology at the UI. He studies visual categorization and object recognition in people and animals. He was recently awarded a Grant-in-Aid of Research from the National Academy of Sciences, administered by Sigma Xi, The Scientific Research Society, to study the general principles of visual object recognition.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>