Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research shows that some features of human face perception are not uniquely human

When it comes to picking a face out of a police lineup, would you guess that you would use some of the same processes a pigeon might use?

If you said "yes," then you're right.

A study published by two University of Iowa researchers in the March 31 issue of the Journal of Vision found that pigeons recognize a human face's identity and emotional expression in much the same way as people do.

Pigeons were shown photographs of human faces that varied in the identity of the face, as well as in their emotional expression -- such as a frown or a smile. In one experiment, pigeons, like humans, were found to perceive the similarity among faces sharing identity and emotion. In a second, key experiment, the pigeons' task was to categorize the photographs according to only one of these dimensions and to ignore the other. The pigeons found it easier to ignore emotion when they recognized face identity than to ignore identity when they recognized face emotion, according to Ed Wasserman, Stuit Professor of Experimental Psychology, and graduate student Fabian Soto, both of the UI College of Liberal Arts and Sciences Department of Psychology.

"This asymmetry has been found many times in experiments with people and it has always been interpreted as the result of the unique organization of the human face processing system." Soto said. "We have provided the first evidence suggesting that this effect can arise from perceptual processes present in other vertebrates.

"The point of the project is not that pigeons perceive faces just as we do or that people do not have specialized processes for face perception. Rather, the point is that both specialized and general processes are likely to be involved in peoples' recognition of faces and that the contributions of each should be carefully determined empirically," he added.

In fact, the findings could make scientists reconsider their assumptions about how uniquely human cognitive processes might interact with more general processes in complex tasks such as face recognition.

"It is a popular practice among researchers in perception and cognition to speculate about specialized mechanisms without offering convincing empirical data to support their ideas. We hope that our research will prompt other researchers to conduct more comparative work to assess their claims about the evolution of uniquely human perceptual and cognitive processes," Wasserman said.

The researchers studied pigeons in this project because they have excellent vision and are not close evolutionary relatives of humans. Pigeons do not have a specialized system for face processing, but they still show similarities to people when they are trained to recognize human faces. The simplest interpretation of these similarities is that they result from general recognition processes shared by both species.

The experiments were conducted in Wasserman's laboratory in 2009 and 2010.

The research was funded by grants from the National Institute of Mental Health and the National Eye Institute.

See to read the entire paper.

Wasserman earned his doctorate in psychology from Indiana University and has been with the UI since 1972. His research interests include the comparative analysis of learning, memory, and cognition, with special interests in conceptualization, causation, and visual perception. He has taught several graduate and undergraduate courses in experimental psychology and behavioral and cognitive neuroscience.

Soto is a graduate student in the Cognition and Perception area of the Department of Psychology at the UI. He studies visual categorization and object recognition in people and animals. He was recently awarded a Grant-in-Aid of Research from the National Academy of Sciences, administered by Sigma Xi, The Scientific Research Society, to study the general principles of visual object recognition.

Jennifer Brown | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>