Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research shows that some features of human face perception are not uniquely human

12.04.2011
When it comes to picking a face out of a police lineup, would you guess that you would use some of the same processes a pigeon might use?

If you said "yes," then you're right.

A study published by two University of Iowa researchers in the March 31 issue of the Journal of Vision found that pigeons recognize a human face's identity and emotional expression in much the same way as people do.

Pigeons were shown photographs of human faces that varied in the identity of the face, as well as in their emotional expression -- such as a frown or a smile. In one experiment, pigeons, like humans, were found to perceive the similarity among faces sharing identity and emotion. In a second, key experiment, the pigeons' task was to categorize the photographs according to only one of these dimensions and to ignore the other. The pigeons found it easier to ignore emotion when they recognized face identity than to ignore identity when they recognized face emotion, according to Ed Wasserman, Stuit Professor of Experimental Psychology, and graduate student Fabian Soto, both of the UI College of Liberal Arts and Sciences Department of Psychology.

"This asymmetry has been found many times in experiments with people and it has always been interpreted as the result of the unique organization of the human face processing system." Soto said. "We have provided the first evidence suggesting that this effect can arise from perceptual processes present in other vertebrates.

"The point of the project is not that pigeons perceive faces just as we do or that people do not have specialized processes for face perception. Rather, the point is that both specialized and general processes are likely to be involved in peoples' recognition of faces and that the contributions of each should be carefully determined empirically," he added.

In fact, the findings could make scientists reconsider their assumptions about how uniquely human cognitive processes might interact with more general processes in complex tasks such as face recognition.

"It is a popular practice among researchers in perception and cognition to speculate about specialized mechanisms without offering convincing empirical data to support their ideas. We hope that our research will prompt other researchers to conduct more comparative work to assess their claims about the evolution of uniquely human perceptual and cognitive processes," Wasserman said.

The researchers studied pigeons in this project because they have excellent vision and are not close evolutionary relatives of humans. Pigeons do not have a specialized system for face processing, but they still show similarities to people when they are trained to recognize human faces. The simplest interpretation of these similarities is that they result from general recognition processes shared by both species.

The experiments were conducted in Wasserman's laboratory in 2009 and 2010.

The research was funded by grants from the National Institute of Mental Health and the National Eye Institute.

See http://www.journalofvision.org/content/11/3/24.full to read the entire paper.

Wasserman earned his doctorate in psychology from Indiana University and has been with the UI since 1972. His research interests include the comparative analysis of learning, memory, and cognition, with special interests in conceptualization, causation, and visual perception. He has taught several graduate and undergraduate courses in experimental psychology and behavioral and cognitive neuroscience.

Soto is a graduate student in the Cognition and Perception area of the Department of Psychology at the UI. He studies visual categorization and object recognition in people and animals. He was recently awarded a Grant-in-Aid of Research from the National Academy of Sciences, administered by Sigma Xi, The Scientific Research Society, to study the general principles of visual object recognition.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>