Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research reveals unexpected biological pathway in glaucoma

04.01.2011
Study is first to pinpoint the precise anatomical location where vision loss appears to occur in glaucoma

In a study published today in the Proceedings of the National Academy of Sciences (Early Edition ahead of print), a team of researchers from the Kennedy Krieger Institute and four collaborating institutions, identified a new and unexpected biological pathway that appears to contribute to the development of glaucoma and its resulting vision loss.

Prior research has suggested that the optic nerve head, the point where the cables that carry information from the eye to the brain first exit the eye, plays a role in glaucoma. In this study, researchers report a series of findings that offer novel insights into cellular and molecular mechanisms operating at the optic nerve head in two mouse models of glaucoma. Most notably, they discovered that at a specific location within the optic nerve head, there is a unique class of cells called astrocytes that demonstrate properties that appear to make them a critical factor in the visual blinding that occurs in glaucoma.

Further, at this same site, researchers found abnormal forms of a protein called gamma synuclein that is similar to abnormal forms of alpha synuclein, a related protein known for its key role in cell loss in Parkinson's disease. The findings suggest that a biological process similar to Parkinson's disease unfolds in glaucoma at the specific anatomical location pinpointed in this study for the first time.

Finally, researchers discovered that at this anatomical location, there is a surprising process whereby astrocytes remove the debris of neurons, the cells that die in neurodegenerative disorders such as glaucoma. It is likely that this newly discovered process involving removal of the debris of one cell by a neighboring cell is important not only in glaucoma and Parkinson's disease, but also for many neurodegenerative diseases.

"These findings are very exciting because they give us several novel targets for future interventions," said Dr. Nicholas Marsh-Armstrong, senior study author and a research scientist at Kennedy Krieger Institute. "I believe these findings put us on the cusp of discovering a treatment for glaucoma that may also have relevance for a number of other neurodegenerative diseases."

Future studies will examine this novel pathway and molecular/cellular mechanism to understand precisely what steps go awry in glaucoma and what can be controlled pharmacologically to identify interventions that slow the disease progression.

Dr. Marsh-Armstrong and other scientists at Kennedy Krieger Institute collaborated on this study with colleagues at the Johns Hopkins University School of Medicine, University of California at San Diego, Cardiff University in England, and the University of Murcia in Spain.

This research was principally supported by the Melza M. and Frank Theodore Barr Foundation through the Glaucoma Research Foundation, with additional grant funding provided in part by the International Retinal Research Foundation and the National Eye Institute of the National Institutes of Health.

About Glaucoma

Glaucoma is a neurodegenerative disorder that causes blindness by damaging the optic nerve, which sends signals from the eye to the brain. It affects more than 60 million people and is the second leading cause of blindness worldwide. While older individuals are at higher risk for the disease, babies and children are also susceptible to glaucoma, especially those with certain neurological disorders.

About the Kennedy Krieger Institute

Internationally recognized for improving the lives of children and adolescents with disorders and injuries of the brain and spinal cord, the Kennedy Krieger Institute in Baltimore, MD serves more than 16,000 individuals each year through inpatient and outpatient clinics, home and community services and school-based programs. Kennedy Krieger provides a wide range of services for children with developmental concerns mild to severe, and is home to a team of investigators who are contributing to the understanding of how disorders develop while pioneering new interventions and earlier diagnosis. For more information on Kennedy Krieger Institute, visit www.kennedykrieger.org.

About the Glaucoma Research Foundation

Located in San Francisco, the Glaucoma Research Foundation is the nation's most experienced foundation dedicated solely to glaucoma research and education. In addition to funding innovative research like the Catalyst For a Cure research consortium and its Shaffer Grants for Innovative Glaucoma Research, Glaucoma Research Foundation provides free education material, including the definitive reference for newly diagnosed patients, Understanding and Living with Glaucoma (available in both English and Spanish editions); brochures serving those at highest risk, including African-Americans and Latinos; and a toll free phone, 800-826-6693, staffed during office hours with an information specialist to answer questions about glaucoma. For more information, please visit www.glaucoma.org.

Megan Lustig | EurekAlert!
Further information:
http://www.spectrumscience.com
http://www.glaucoma.org
http://www.kennedykrieger.org

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>