Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals link between beer and bone health

08.02.2010
Study finds beer is a rich source of silicon, may help prevent osteoporosis

A new study suggests that beer is a significant source of dietary silicon, a key ingredient for increasing bone mineral density. Researchers from the Department of Food Science & Technology at the University of California, Davis studied commercial beer production to determine the relationship between beer production methods and the resulting silicon content, concluding that beer is a rich source of dietary silicon.

Details of this study are available in the February issue of the Journal of the Science of Food and Agriculture, published by Wiley-Blackwell on behalf of the Society of Chemical Industry.

"The factors in brewing that influence silicon levels in beer have not been extensively studied" said Charles Bamforth, lead author of the study. "We have examined a wide range of beer styles for their silicon content and have also studied the impact of raw materials and the brewing process on the quantities of silicon that enter wort and beer."

Silicon is present in beer in the soluble form of orthosilicic acid (OSA), which yields 50% bioavailability, making beer a major contributor to silicon intake in the Western diet. According to the National Institutes of Health (NIH), dietary silicon (Si), as soluble OSA, may be important for the growth and development of bone and connective tissue, and beer appears to be a major contributor to Si intake. Based on these findings, some studies suggest moderate beer consumption may help fight osteoporosis, a disease of the skeletal system characterized by low bone mass and deterioration of bone tissue.

The researchers examined a variety of raw material samples and found little change in the silicon content of barley during the malting process. The majority of the silicon in barley is in the husk, which is not affected greatly during malting. The malts with the higher silicon contents are pale colored which have less heat stress during the malting process. The darker products, such as the chocolate, roasted barley and black malt, all have substantial roasting and much lower silicon contents than the other malts for reasons that are not yet known. The hop samples analyzed showed surprisingly high levels of silicon with as much as four times more silicon than is found in malt. However, hops are invariably used in a much smaller quantity than is grain. Highly hopped beers, however, would be expected to contain higher silicon levels.

No silicon was picked up from silica hydrogel used to stabilize beer, even after a period of 24 hours and neither is there pick up from diatomaceous earth filter aid.

The study also tested 100 commercial beers for silicon content and categorized the data according to beer style and source. The average silicon content of the beers sampled was 6.4 to 56.5 mg/L.

"Beers containing high levels of malted barley and hops are richest in silicon," concludes Dr. Bamforth. "Wheat contains less silicon than barley because it is the husk of the barley that is rich in this element. While most of the silicon remains in the husk during brewing, significant quantities of silicon nonetheless are extracted into wort and much of this survives into beer."

Article: "Silicon in Beer and Brewing." Troy R. Casey and Charles W. Bamforth. Journal of the Science of Food and Agriculture Published Online: February 8, 2010 (DOI: 10.1002/JSFA.3884); Print Issue Date: February 2010

This study is published in Journal of the Science of Food and Agriculture. Media wishing to receive a PDF of this article may contact physicalsciencenews@wiley.com.

The Journal of the Science of Food and Agriculture publishes peer-reviewed original research, reviews, mini-reviews, perspectives and spotlights, with particular emphasis on interdisciplinary studies at the agriculture/ food interface. This international journal covers fundamental and applied research, including: food, health and nutrition, food science and technology, biotechnology, molecular biology, biochemistry, food safety, materials and processing, agriculture production, utilization, and environment, as well as sensory and consumer sciences. The Journal of the Science of Food and Agriculture is published by Wiley-Blackwell on behalf of the Society of Chemical Industry (SCI). For more information, please visit www.interscience.wiley.com/jsfa.

The Society of Chemical Industry (SCI) is a unique international forum where science meets business on independent and impartial ground. Anyone can join the Society, which offers a chance to share information, ideas and new innovations between sectors as diverse as food and agriculture, pharmaceuticals, biotechnology, environmental science and safety. Originally established in 1881, SCI is a registered charity with individual Members in over 70 countries. For further information on SCI activities and publications, please visit: www.soci.org

Wiley-Blackwell is the international scientific, technical, medical, and scholarly publishing business of John Wiley & Sons, with strengths in every major academic and professional field and partnerships with many of the world's leading societies. Wiley-Blackwell publishes nearly 1,500 peer-reviewed journals and 1,500+ new books annually in print and online, as well as databases, major reference works and laboratory protocols. For more information, please visit www.wileyblackwell.com or www.interscience.wiley.com.

Dawn Peters | EurekAlert!
Further information:
http://www.wiley.com
http://www.interscience.wiley.com

Further reports about: OSA SCI Science TV Wiley-Blackwell agriculture raw material

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>