Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals what drives lung cancer's spread

06.07.2009
A new study by researchers at Memorial Sloan-Kettering Cancer Center (MSKCC) reveals the genetic underpinnings of what causes lung cancer to quickly metastasize, or spread, to the brain and the bone – the two most prominent sites of lung cancer relapse. The study will be published online in the journal Cell on July 2.

Researchers discovered that the same cellular pathway that has been shown to be involved with the spread of colorectal cancer is also responsible for providing lung cancer with an enhanced ability to infiltrate and colonize other organs without delay and with little need to adapt to its new environment.

This is a dramatic departure from other cancers, like breast cancer, in which recurrences tend to emerge following years of remission, suggesting that such cancer cells initially lack – and need time to acquire – the characteristics and ability to spread to other organs.

The investigators hypothesized that because not all lung tumors have spread before diagnosis and removal, metastasis may depend on some added feature beyond the mutations that initiate these tumors.

Researchers used bioinformatics to interrogate large collections of lung tumor samples. They found that the WNT cell-signaling pathway was the only one out of the six pathways tested that was hyperactive in lung tumors that went on to metastasize and was normal in those that did not spread. They also observed that WNT hyperactivity was associated with aggressive biological tumor characteristics and poor clinical outcome, suggesting that cancer metastasis is linked to poor survival.

"Mutations that activate the WNT pathway are a common cause of colon cancer, but lung tumors are initiated by mutations in other genes so we were surprised that a hyperactive WNT pathway would be responsible for metastasis in lung cancer," said the study's senior author Joan Massagué, PhD, Chair of the Cancer Biology and Genetics Program at MSKCC and a Howard Hughes Medical Institute investigator.

This finding was confirmed with additional experiments in mice that showed that lung cancer cells with tumor-initiating mutations in the genes KRAS and EGFR also depended on a hyperactive WNT pathway for metastasis. The researchers went on to find two genes – HOXB9 and LEF1 – that are activated by WNT and enhance the ability of lung cancer cells to swiftly invade and reinitiate tumor growth. These are functions that cancer cells need in order to conquer other organs and that are being enabled by the WNT pathway in the primary tumor.

"Our findings suggest that using treatments that target the WNT pathway may help prevent lung cancer from repeatedly seeding itself throughout the vital organs of patients at risk for metastasis," said Dr. Massagué.

The following investigators at MSKCC contributed to this research: Don X. Nguyen, Anne C. Chiang, Xiang H. F. Zhang, Juliet Y. Kim, Mark G. Kris, Marc Ladanyi, and the late William L. Gerald.

The work was supported by grants from the National Institutes of Health, the Damon Runyon Cancer Research Foundation, the American Society of Clinical Oncology, the Hearst Foundation, and the Alan and Sandra Gerry Metastasis Research Initiative.

Memorial Sloan-Kettering Cancer Center is the world's oldest and largest private institution devoted to prevention, patient care, research, and education in cancer. Our scientists and clinicians generate innovative approaches to better understand, diagnose, and treat cancer. Our specialists are leaders in biomedical research and in translating the latest research to advance the standard of cancer care worldwide. For more information, go to www.mskcc.org.

Esther Napolitano | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>