Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals what drives lung cancer's spread

06.07.2009
A new study by researchers at Memorial Sloan-Kettering Cancer Center (MSKCC) reveals the genetic underpinnings of what causes lung cancer to quickly metastasize, or spread, to the brain and the bone – the two most prominent sites of lung cancer relapse. The study will be published online in the journal Cell on July 2.

Researchers discovered that the same cellular pathway that has been shown to be involved with the spread of colorectal cancer is also responsible for providing lung cancer with an enhanced ability to infiltrate and colonize other organs without delay and with little need to adapt to its new environment.

This is a dramatic departure from other cancers, like breast cancer, in which recurrences tend to emerge following years of remission, suggesting that such cancer cells initially lack – and need time to acquire – the characteristics and ability to spread to other organs.

The investigators hypothesized that because not all lung tumors have spread before diagnosis and removal, metastasis may depend on some added feature beyond the mutations that initiate these tumors.

Researchers used bioinformatics to interrogate large collections of lung tumor samples. They found that the WNT cell-signaling pathway was the only one out of the six pathways tested that was hyperactive in lung tumors that went on to metastasize and was normal in those that did not spread. They also observed that WNT hyperactivity was associated with aggressive biological tumor characteristics and poor clinical outcome, suggesting that cancer metastasis is linked to poor survival.

"Mutations that activate the WNT pathway are a common cause of colon cancer, but lung tumors are initiated by mutations in other genes so we were surprised that a hyperactive WNT pathway would be responsible for metastasis in lung cancer," said the study's senior author Joan Massagué, PhD, Chair of the Cancer Biology and Genetics Program at MSKCC and a Howard Hughes Medical Institute investigator.

This finding was confirmed with additional experiments in mice that showed that lung cancer cells with tumor-initiating mutations in the genes KRAS and EGFR also depended on a hyperactive WNT pathway for metastasis. The researchers went on to find two genes – HOXB9 and LEF1 – that are activated by WNT and enhance the ability of lung cancer cells to swiftly invade and reinitiate tumor growth. These are functions that cancer cells need in order to conquer other organs and that are being enabled by the WNT pathway in the primary tumor.

"Our findings suggest that using treatments that target the WNT pathway may help prevent lung cancer from repeatedly seeding itself throughout the vital organs of patients at risk for metastasis," said Dr. Massagué.

The following investigators at MSKCC contributed to this research: Don X. Nguyen, Anne C. Chiang, Xiang H. F. Zhang, Juliet Y. Kim, Mark G. Kris, Marc Ladanyi, and the late William L. Gerald.

The work was supported by grants from the National Institutes of Health, the Damon Runyon Cancer Research Foundation, the American Society of Clinical Oncology, the Hearst Foundation, and the Alan and Sandra Gerry Metastasis Research Initiative.

Memorial Sloan-Kettering Cancer Center is the world's oldest and largest private institution devoted to prevention, patient care, research, and education in cancer. Our scientists and clinicians generate innovative approaches to better understand, diagnose, and treat cancer. Our specialists are leaders in biomedical research and in translating the latest research to advance the standard of cancer care worldwide. For more information, go to www.mskcc.org.

Esther Napolitano | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>