Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals what drives lung cancer's spread

06.07.2009
A new study by researchers at Memorial Sloan-Kettering Cancer Center (MSKCC) reveals the genetic underpinnings of what causes lung cancer to quickly metastasize, or spread, to the brain and the bone – the two most prominent sites of lung cancer relapse. The study will be published online in the journal Cell on July 2.

Researchers discovered that the same cellular pathway that has been shown to be involved with the spread of colorectal cancer is also responsible for providing lung cancer with an enhanced ability to infiltrate and colonize other organs without delay and with little need to adapt to its new environment.

This is a dramatic departure from other cancers, like breast cancer, in which recurrences tend to emerge following years of remission, suggesting that such cancer cells initially lack – and need time to acquire – the characteristics and ability to spread to other organs.

The investigators hypothesized that because not all lung tumors have spread before diagnosis and removal, metastasis may depend on some added feature beyond the mutations that initiate these tumors.

Researchers used bioinformatics to interrogate large collections of lung tumor samples. They found that the WNT cell-signaling pathway was the only one out of the six pathways tested that was hyperactive in lung tumors that went on to metastasize and was normal in those that did not spread. They also observed that WNT hyperactivity was associated with aggressive biological tumor characteristics and poor clinical outcome, suggesting that cancer metastasis is linked to poor survival.

"Mutations that activate the WNT pathway are a common cause of colon cancer, but lung tumors are initiated by mutations in other genes so we were surprised that a hyperactive WNT pathway would be responsible for metastasis in lung cancer," said the study's senior author Joan Massagué, PhD, Chair of the Cancer Biology and Genetics Program at MSKCC and a Howard Hughes Medical Institute investigator.

This finding was confirmed with additional experiments in mice that showed that lung cancer cells with tumor-initiating mutations in the genes KRAS and EGFR also depended on a hyperactive WNT pathway for metastasis. The researchers went on to find two genes – HOXB9 and LEF1 – that are activated by WNT and enhance the ability of lung cancer cells to swiftly invade and reinitiate tumor growth. These are functions that cancer cells need in order to conquer other organs and that are being enabled by the WNT pathway in the primary tumor.

"Our findings suggest that using treatments that target the WNT pathway may help prevent lung cancer from repeatedly seeding itself throughout the vital organs of patients at risk for metastasis," said Dr. Massagué.

The following investigators at MSKCC contributed to this research: Don X. Nguyen, Anne C. Chiang, Xiang H. F. Zhang, Juliet Y. Kim, Mark G. Kris, Marc Ladanyi, and the late William L. Gerald.

The work was supported by grants from the National Institutes of Health, the Damon Runyon Cancer Research Foundation, the American Society of Clinical Oncology, the Hearst Foundation, and the Alan and Sandra Gerry Metastasis Research Initiative.

Memorial Sloan-Kettering Cancer Center is the world's oldest and largest private institution devoted to prevention, patient care, research, and education in cancer. Our scientists and clinicians generate innovative approaches to better understand, diagnose, and treat cancer. Our specialists are leaders in biomedical research and in translating the latest research to advance the standard of cancer care worldwide. For more information, go to www.mskcc.org.

Esther Napolitano | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>