Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research pinpoints action of protein linked to key molecular switch

20.04.2010
Findings may illuminate how cancer forms and migrates

Rho proteins have been described as "molecular switches" and play a role in cell migration, cell proliferation, cell death, gene expression, and multiple other common cellular functions.

Understanding the actions of Rho proteins is important to illuminating cellular mechanisms related to cancer, which is fundamentally a disease of cell misbehavior. When cells multiply too rapidly, multiply and migrate into inappropriate places in the body, do not die after their natural lifespan or create networks of blood vessels where they should not, cancer results.

A study led by Keith Burridge, PhD, professor of cell and developmental biology, published online April 18 in the journal Nature Cell Biology, demonstrates that a protein called Rho GDI1 is a key to maintaining a balance of Rho proteins that allow optimal cellular functioning.

Traditionally scientists have understood the regulation of these proteins to be a function of “on” or “off” switching and that Rho GDI was a passive player in this process. This study demonstrates that the mechanism is more subtle, like a dimmer switch on a lighting panel that allows for a spectrum of levels. Rho proteins are inherently unstable because they are partially made up of a lipid (or fat). RhoGDI contains a “pocket” that can bind this lipid, thus protecting it.

One of the most important findings from this study is that changes in the expression level of one Rho protein can affect the expression levels and activities of other members of the family. In cells there is a limited amount of RhoGDI, and many different Rho proteins compete for binding to RhoGDI. The authors show that, when the protein levels of a particular Rho protein are artificially increased, the other Rho proteins are displaced from RhoGDI and degraded. Notably, previous studies have shown that many cancers exhibit altered levels of Rho proteins, raising the possibility that RhoGDI may be playing an important role in the biology of these cancer cells.

The authors hope that their work will help scientists better understand the subtle balancing mechanism that keeps cells functioning optimally, eventually leading to therapies that might target the balance of these proteins to prevent the cellular misbehavior that leads to cancers. The authors present preliminary results with two different cancer cell lines showing a correlation between the expression levels of RhoGDI and the levels and activities of Rho proteins.

The research team includes additional investigators from UNC Lineberger Comprehensive Cancer Center, UNC McAllister Heart Institute, Nice Sophia Antipolis University in France and Northwestern University in Chicago.

The work was funded by the National Institutes of Health, a Department of Defense Breast Cancer Predoctoral Fellowship, a Susan Komen Foundation Postdoctoral Fellowship, a AHA Beginning Grant in Aid, an AHA Postdoctoral Fellowship, a Fondation pur la Recherche Medicale Fellowship and an Allocation INSERM InCa/AVENIR.

Ellen de Graffenreid | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: AHA Cancer RhoGDI UNC blood vessel cell death cellular function cellular mechanism

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>