Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research pinpoints action of protein linked to key molecular switch

20.04.2010
Findings may illuminate how cancer forms and migrates

Rho proteins have been described as "molecular switches" and play a role in cell migration, cell proliferation, cell death, gene expression, and multiple other common cellular functions.

Understanding the actions of Rho proteins is important to illuminating cellular mechanisms related to cancer, which is fundamentally a disease of cell misbehavior. When cells multiply too rapidly, multiply and migrate into inappropriate places in the body, do not die after their natural lifespan or create networks of blood vessels where they should not, cancer results.

A study led by Keith Burridge, PhD, professor of cell and developmental biology, published online April 18 in the journal Nature Cell Biology, demonstrates that a protein called Rho GDI1 is a key to maintaining a balance of Rho proteins that allow optimal cellular functioning.

Traditionally scientists have understood the regulation of these proteins to be a function of “on” or “off” switching and that Rho GDI was a passive player in this process. This study demonstrates that the mechanism is more subtle, like a dimmer switch on a lighting panel that allows for a spectrum of levels. Rho proteins are inherently unstable because they are partially made up of a lipid (or fat). RhoGDI contains a “pocket” that can bind this lipid, thus protecting it.

One of the most important findings from this study is that changes in the expression level of one Rho protein can affect the expression levels and activities of other members of the family. In cells there is a limited amount of RhoGDI, and many different Rho proteins compete for binding to RhoGDI. The authors show that, when the protein levels of a particular Rho protein are artificially increased, the other Rho proteins are displaced from RhoGDI and degraded. Notably, previous studies have shown that many cancers exhibit altered levels of Rho proteins, raising the possibility that RhoGDI may be playing an important role in the biology of these cancer cells.

The authors hope that their work will help scientists better understand the subtle balancing mechanism that keeps cells functioning optimally, eventually leading to therapies that might target the balance of these proteins to prevent the cellular misbehavior that leads to cancers. The authors present preliminary results with two different cancer cell lines showing a correlation between the expression levels of RhoGDI and the levels and activities of Rho proteins.

The research team includes additional investigators from UNC Lineberger Comprehensive Cancer Center, UNC McAllister Heart Institute, Nice Sophia Antipolis University in France and Northwestern University in Chicago.

The work was funded by the National Institutes of Health, a Department of Defense Breast Cancer Predoctoral Fellowship, a Susan Komen Foundation Postdoctoral Fellowship, a AHA Beginning Grant in Aid, an AHA Postdoctoral Fellowship, a Fondation pur la Recherche Medicale Fellowship and an Allocation INSERM InCa/AVENIR.

Ellen de Graffenreid | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: AHA Cancer RhoGDI UNC blood vessel cell death cellular function cellular mechanism

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>