Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research pinpoints action of protein linked to key molecular switch

Findings may illuminate how cancer forms and migrates

Rho proteins have been described as "molecular switches" and play a role in cell migration, cell proliferation, cell death, gene expression, and multiple other common cellular functions.

Understanding the actions of Rho proteins is important to illuminating cellular mechanisms related to cancer, which is fundamentally a disease of cell misbehavior. When cells multiply too rapidly, multiply and migrate into inappropriate places in the body, do not die after their natural lifespan or create networks of blood vessels where they should not, cancer results.

A study led by Keith Burridge, PhD, professor of cell and developmental biology, published online April 18 in the journal Nature Cell Biology, demonstrates that a protein called Rho GDI1 is a key to maintaining a balance of Rho proteins that allow optimal cellular functioning.

Traditionally scientists have understood the regulation of these proteins to be a function of “on” or “off” switching and that Rho GDI was a passive player in this process. This study demonstrates that the mechanism is more subtle, like a dimmer switch on a lighting panel that allows for a spectrum of levels. Rho proteins are inherently unstable because they are partially made up of a lipid (or fat). RhoGDI contains a “pocket” that can bind this lipid, thus protecting it.

One of the most important findings from this study is that changes in the expression level of one Rho protein can affect the expression levels and activities of other members of the family. In cells there is a limited amount of RhoGDI, and many different Rho proteins compete for binding to RhoGDI. The authors show that, when the protein levels of a particular Rho protein are artificially increased, the other Rho proteins are displaced from RhoGDI and degraded. Notably, previous studies have shown that many cancers exhibit altered levels of Rho proteins, raising the possibility that RhoGDI may be playing an important role in the biology of these cancer cells.

The authors hope that their work will help scientists better understand the subtle balancing mechanism that keeps cells functioning optimally, eventually leading to therapies that might target the balance of these proteins to prevent the cellular misbehavior that leads to cancers. The authors present preliminary results with two different cancer cell lines showing a correlation between the expression levels of RhoGDI and the levels and activities of Rho proteins.

The research team includes additional investigators from UNC Lineberger Comprehensive Cancer Center, UNC McAllister Heart Institute, Nice Sophia Antipolis University in France and Northwestern University in Chicago.

The work was funded by the National Institutes of Health, a Department of Defense Breast Cancer Predoctoral Fellowship, a Susan Komen Foundation Postdoctoral Fellowship, a AHA Beginning Grant in Aid, an AHA Postdoctoral Fellowship, a Fondation pur la Recherche Medicale Fellowship and an Allocation INSERM InCa/AVENIR.

Ellen de Graffenreid | EurekAlert!
Further information:

Further reports about: AHA Cancer RhoGDI UNC blood vessel cell death cellular function cellular mechanism

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>