Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research: Too much, too little noise turns off consumers, creativity

15.05.2012
The sound of silence isn’t so golden for consumers, and both marketers and advertisers should take note, says new research from a University of Illinois expert in new product development and marketing.

According to published research from Ravi Mehta, a professor of business administration, ambient background noise turns out to be an important factor affecting creative cognition among consumers.

“We found that ambient noise is an important antecedent for creative cognition,” Mehta said. “A moderate level of noise not only enhances creative problem-solving but also leads to a greater adoption of innovative products in certain settings.”

In the article, Methta and co-authors Rui (Juliet) Zhu, of the University of British Columbia, and Amar Cheema, of the University of Virginia, explore how a moderate-level of ambient noise (about 70 decibels, equivalent to a passenger car traveling on a highway) enhances performance on creative tasks and increases the likelihood of consumers purchasing innovative products. Similarly, the researchers also studied how a high level of noise (85 decibels, equivalent to traffic noise on a major road) hurts creativity by reducing information processing.

“What we found is that there’s an inverted-U relationship between noise level and creativity,” Mehta said. “It turns out that around 70 decibels is the sweet spot. If you go beyond that, it’s too loud, and the noise starts to negatively affect creativity. It’s the Goldilocks principle – the middle is just right.”

Using background noise commonly found in consumers’ lives, the researchers show that, as noise increases, so does one’s level of distraction.

“An increased level of distraction makes you think ‘out-of-the-box’ – what we call abstract thinking or abstract processing, which is a hallmark of increased creativity,” Mehta said. “But when you start to go beyond that moderate level of noise, what happens is that distraction becomes so huge that it really starts affecting the thought process. You really can’t process information because the distraction is so pronounced. And that is what inhibits creativity.

“So a moderate level of noise produces just enough distraction to lead to higher creativity, but a very high level of noise induces too much distraction, which actually reduces the amount of processing, thus leading to lower creativity.”

The research, which has important practical implications for inducing consumer behavior, should be useful for both advertisers and marketers, who typically strive to increase adoption rates of new and innovative products.

“We studied this in a consumer environment because previous research has only considered white noise or pink noise” – a variant of white noise, which sounds like the static buzz of an off-air TV station – “which you don’t really find in consumer environments,” Mehta said. “So in this case we used everyday multi-talker noise to find out how it affects consumer behavior in a consumption environment. In order to encourage adoption of new and innovative products, marketers might consider equipping their showrooms with a moderate level of ambient noise.”

Mehta says the research is not only applicable to consumer research, but also to problem-solving in general.

“This is research that people can relate to almost immediately,” he said. “I’m working in a coffee shop – how does the noise in the background volume of the music affect my performance?"

It’s also valuable for individuals looking for creative solutions to everyday problems, such as planning a dinner menu based on limited supplies or generating interesting research topics to study.

“Our findings imply that instead of burying oneself in a quiet room trying to figure out a solution, walking outside of one’s comfort zone and getting into a relatively noisy environment like a cafe may actually trigger the brain to think abstractly, and thus generate creative ideas,” Mehta said.

Phil Ciciora | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>